— давление, оказываемое светом на отражающие и поглощающие тела, частицы, а также отдельные молекулы и атомы; одно из пондеромоторных действий света, связанное с передачей импульса электромагнитного поля веществу. Гипотеза о существовании давления света была впервые высказана И. Кеплером (J.Kepler) в 17 в. для объяснения отклонения хвостов комет от Солнца. Теория давление света в рамках классической электродинамики дана Дж. Максвеллом (J.Maxwell) в 1873. В ней давление света тесно связано с рассеянием и поглощением электромагнитной волны частицами вещества. В рамках квантовой теории давление света — результат передачи импульса фотонами телу.

В 1873 г. Максвелл, исходя из представлений об электромагнитной природе света, предсказал, что свет должен оказывать давление на препятствия. Это давление обусловлено силами, действующими со стороны электрической и магнитной составляющих электромагнитного поля волны на заряды в освещаемом теле.

Пусть свет падает на проводящую (металлическую) пластину. Электрическая составляющая поля волны воздействует на свободные электроны с силой

F эл =q·E ,

где q — заряд электрона. E — напряженность электрического поля волны.

Электроны начинают двигаться со скоростью V (рис.1) Так как направление Е в волне периодически меняется на противоположное, то и электроны периодически изменяют направление своего движения на противоположное, т.е. совершают вынужденные колебания вдоль направления электрического поля волны.


Рисунок 1 – Движение электронов

Магнитная составляющая В электромагнитного поля световой волны действует с силой Лоренца

F л = q·V·B,

Направление которой в соответствии с правилом левой руки совпадает с направлением распространения света. Когда направления E и B меняются на противоположные, то изменяется и направление скорости электрона, а направление силы Лоренца остается неизменным. Равнодействующая сил Лоренца, действующих на свободные электроны в поверхностном слое вещества, представляет собой силу, с которой свет давит на поверхность.


Рисунок 2

1- зеркальное крылышко; 2- зачерненное крылышко; 3-зеркало; 4-шкала для измерения угла поворота; 5-стеклянная нить

Давление света может быть объяснено и на основе квантовых представлений о свете. Как указано выше, фотоны обладают импульсом. При столкновении фотонов с веществом часть фотонов отражается, а часть поглощается. Оба процесса сопровождаются передачей импульса от фотонов к освещаемой поверхности. Согласно второму закону Ньютона, изменение импульса тела означает, что на тело действует сила светового давления F дав . Отношение модуля этой силы к площади поверхности тела равно давлению света на поверхность: P = F дав /S .

Существование давления света было экспериментально подтверждено Лебедевым. Прибор, созданный Лебедевым, представлял очень чувствительные крутильные весы. Подвижной частью весов являлась подвешенная на тонкой кварцевой нити легкая рамка со светлыми и темными крылышками толщиной 0.01 мм. Cвет оказывал разное давление на светлые (отражающие) и темные (поглощающие) крылышки. В результате на рамку действовал вращающий момент, который закручивал нить подвеса. По углу закручивания нити определялось давление света.

Величина давления зависит от интенсивности света. С ростом интенсивности растет число фотонов, взаимодействующих с поверхностью тела, и, следовательно, импульс, получаемый поверхностью.
Мощные лазерные пучки создают давление, превышающее атмосферное.

При нормальном падении света на поверхность твердого тела давление света определяется формулой p = S (1 — R )/c , где S — плотность потока энергии (интенсивность света), R — коэффициент отражения света от поверхности.

Экспериментально давление света на твердые тела было впервые исследовано П.Н.Лебедевым в 1899. Основные трудности в экспериментальном обнаружении давления света заключались в выделении его на фоне радиометрических и конвективных сил, величина которых зависит от давления окружающего тело газа и при недостаточном вакууме может превышать давление света на несколько порядков. В опытах Лебедева в вакуумированном ( мм рт. ст.) стеклянном сосуде на тонкой серебряной нити подвешивались коромысла крутильных весов с закрепленными на них тонкими дисками-крылышками, которые и облучались. Крылышки изготавливались из различных металлов и слюды с идентичными противоположными поверхностями. Последовательно облучая переднюю и заднюю поверхности крылышек различной толщины, Лебедеву удалось нивелировать остаточное действие радиометрических сил и получить удовлетворительное (с ошибкой %) согласие с теорией Максвелла. В 1907-10 Лебедев выполнил еще более тонкие эксперименты по исследованию давления света на газы и также получил хорошее согласие с теорией.

Давление света играет большую роль в астрономических и атомных явлениях. В астрофизике давление света наряду с давлением газа обеспечивает стабильность звёзд, противодействуя силам гравитации. Действием давления света объясняются некоторые формы кометных хвостов. К атомным эффектам относится т. н. световая отдача, которую испытывает возбужденный атом при испускании фотона.

В конденсированных средах давление света может вызывать ток носителей (смотри Светоэлектрический эффект).

Специфические особенности давления света обнаруживаются в разреженных атомных системах при резонансном рассеянии интенсивного света, когда частота лазерного излучения равна частоте атомного перехода. Поглощая фотон, атом получает импульс в направлении лазерного пучка и переходит в возбужденное состояние. Далее, спонтанно испуская фотон, атом приобретает импульс (световая отдача ) в произвольном направлении. При последующих поглощениях и спонтанных испусканиях фотонов произвольно направленные импульсы световой отдачи взаимно гасятся, и, в конечном итоге, резонансный атом получает импульс, направленный вдоль светового луча резонансное давление света . Сила F резонансного давления света на атом определяется как импульс, переданный потоком фотонов с плотностью N в единицу времени: , где — импульс одного фотона, — сечение поглощения резонансного фотона, — длина волны света. При относительно малых плотностях излучения резонансное давление света прямо пропорционально интенсивности света. При больших плотностях N в связи с конечным () временем жизни возбужденного уровня происходит насыщение поглощения и насыщение резонансного давления света (см. Насыщения эффект). В этом случае давление света создают фотоны, снонтанно испускаемые атомами со средней частотой (обратной времени жизни возбужденного атома) в случайном направлении, определяемом диаграммой испускания атома. Сила светового давления перестаёт зависеть от интенсивности, а определяется скоростью спонтанных актов испускания: . Для типичных значений с -1 и мкм сила давления света эВ/см; при насыщении резонансное давление света может создавать ускорение атомов до 10 5
g (g
ускорение свободного падения). Столь большие силы позволяют селективно управлять атомными пучками, варьируя частоту света и по-разному воздействуя на группы атомов, мало отличающиеся частотами резонансного поглощения. В частности, удается сжимать максвелловское распределение по скоростям, убирая из пучка высокоскоростные атомы. Свет лазера направляют навстречу атомному пучку, подбирая при этом частоту и форму спектра излучения так, чтобы наиболее сильное тормозящее действие давления света испытывали наиболее быстрые атомы из-за их большего доплеровского смещения резонансной частоты. Другим возможным применением резонансного давления света является разделение газов: при облучении двухкамерного сосуда, наполненного смесью двух газов, один из которых находится в резонансе с излучением, резонансные атомы под действием давления света перейдут в дальнюю камеру.

Своеобразные черты имеет резонансное давление света на атомы, помещенные в поле интенсивной стоячей волны. С квантовой точки зрения стоячая волна, образованная встречными потоками фотонов, вызывает толчки атома, обусловленные поглощением фотонов и их стимулированным испусканием. Средняя сила, действующая на атом, при этом не равна нулю вследствие неоднородности поля на длине волны. С классической точки зрения сила давления света обусловлена действием пространственно неоднородного поля на наведенный им атомный диполь. Эта сила минимальна в узлах, где дипольный момент не наводится, и в пучностях, где градиент поля обращается в нуль. Максимальная сила давления света по порядку величины равна (знаки относятся к синфазному и противофазному движению диполей с моментом d по отношению к полю с напряжённостью E ). Эта сила может достигать гигантских значений: для дебай, мкм и В/см сила эВ/см.

Поле стоячей волны расслаивает пучок атомов, проходящий сквозь луч света, так как диполи, колеблющиеся в противофазе, двигаются по различным траекториям подобно атомам в опыте Штерна-Герлаха. В лазерных пучках на атомы, двигающиеся вдоль луча, действует радиальная сила давления света, обусловленная радиальной неоднородностью плотности светового поля.

Как в стоячей, так и в бегущей волне происходит не только детерминированное движение атомов, но и их диффузия в фазовом пространстве вследствие того, что акты поглощения и испускания фотонов — чисто квантовые случайные процессы. Коэффициент пространственной диффузии для атома с массой M в бегущей волне равен .

Подобное рассмотренному резонансное давление света могут испытывать и квазичастицы в твёрдых телах: электроны, экситоны и др.

Список литературы

    Мустафаев Р.А., Кривцов В.Г. Физика. М., 2006.

    Давлением света называется давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела. Существование давления было предсказано Дж. Максвеллом в его электромагнитной теории света.

    Если, например, электромагнитная волна падает на металл (рис. 19.9), то под действием электрического поля волны с напряженностью \(\vec E\) электроны поверхностного слоя металла будут двигаться в направлении, противоположном вектору \(\vec E,\) со скоростью \(\vec \upsilon = const.\) Магнитное поле волны с индукцией \(~В\) действует на движущиеся электроны с силой Лоренца F Л в направлении, перпендикулярном поверхности металла (согласно правилу левой руки). Давление р, оказываемое волной на поверхность металла, можно рассчитать как отношение равнодействующей сил Лоренца, действующих на свободные электроны в поверхностном слое металла, к площади поверхности металла:

    \(p = \dfrac{ \sum_{n=1}^n \vec F_{iL} }{S}.\)

    На основании электромагнитной теории Максвелл получил формулу для светового давления. С ее помощью он рассчитал давление солнечного света в яркий полдень на абсолютно черное тело, расположенное перпендикулярно солнечным лучам. Это давление оказалось равным 4,6 мкПа:

    \(~p = (1 + \rho)\dfrac{J}{c}.\)

    где J - интенсивность света, \(~\rho\) - коэффициент отражения света (см. § 16.3), с - скорость света в вакууме. Для зеркальных поверхностей \(~\rho = 1,\) при полном поглощении (для абсолютно черного тела) \(~\rho = 0\)

    С точки зрения квантовой теории, давление является следствием того, что у фотона имеется импульс \(p_f = \dfrac{h \nu}{c}.\) Пусть свет падает перпендикулярно поверхности тела и за 1 с на 1 м 2 поверхности падает N фотонов. Часть из них поглотится поверхностью тела (неупругое соударение), и каждый из поглощенных фотонов передает этой поверхности свой импульс \(p_f = \dfrac{h \nu}{c}.\) Часть же фотонов отразится (упругое соударение). Отраженный фотон полетит от поверхности в противоположном направлении. Полный импульс, переданный поверхности отраженным фотоном, будет равен

    \(\Delta p_f = p_f - (-p_f) = 2p_f = 2\dfrac{h \nu}{c}.\)

    Давление света на поверхность будет равно импульсу, который передают за 1 с все N фотонов, падающих на 1 м 2 поверхности тела (\(F\Delta t=\Delta p \Rightarrow F=\frac{\Delta p}{\Delta t}; p = \frac{F}{S}=\frac{\Delta p}{S\Delta t}\)). Если \(~\rho\) - коэффициент отражения света от произвольной поверхности, \(k\) - коэффициент пропускания света, то \(~\rho \cdot N\) - это число отраженных фотонов, а \(~(1 - k - \rho)N\) - число поглощенных фотонов. Следовательно, давление света

    \(p = 2 \rho N \dfrac{h \nu}{c}+(1-k-\rho)N\dfrac{h \nu}{c} = (1 - k + \rho) N \dfrac{h \nu}{c}.\)

    Произведение представляет собой энергию всех фотонов, падающих на 1 м 2 поверхности за 1 с. Это есть интенсивность света (поверхностная плотность потока излучения падающего света):

    \(Nh\nu = \dfrac{W}{S \cdot t} = I.\)

    Таким образом, давление света \(p = (1 - k + \rho)\dfrac{I}{c}.\)

    Предсказанное Максвеллом световое давление было экспериментально обнаружено и измерено русским физиком П. Н. Лебедевым. В 1900 г. он измерил давление света на твердые тела, а в 1907-1910 гг. - давление света на газы.

    Прибор, созданный Лебедевым для измерения давления света, представлял собой очень чувствительный крутильный динамометр (крутильные весы). Его подвижной частью являлась подвешенная на тонкой кварневой нити легкая рамка с укрепленными на ней крылышками - светлыми и черными дисками толщиной до 0,01 мм. Крылышки делали из металлической фольги (рис. 19.10). Рамка была подвешена внутри сосуда, из которого откачали воздух.

    Свет, падая на крылышки, оказывал на светлые и черные диски разное давление. В результате на рамку действовал вращающий момент, который закручивал нить подвеса. По углу закручивания нити определялось давление света.

    Трудности измерения светового давления вызывались его исключительно малым значением и существованием явлений, сильно влияющих на точность измерений. К их числу относилась невозможность полностью откачать воздух из сосуда, что приводило к возникновению так называемого радиометрического эффекта.

    Сущность этого явления в следующем. Сторона крылышек, обращенная к источнику света, нагревается сильнее противоположной стороны. Поэтому  молекулы воздуха, отражающиеся от более нагретой стороны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны. Так появляется дополнительный вращающий момент.

    Схема установки Лебедева для измерения давления света на газы изображена на рисунке 19.11. Свет, проходящий сквозь стеклянную стенку А, действует на газ, заключенный в цилиндрическом канале В. Под давлением света газ из канала В перетекает в сообщающийся с ним канал С. В канале С находится легкий подвижный поршень D, подвешенный на тонкой упругой нити Е, перпендикулярной плоскости чертежа. Световое давление рассчитывалось по углу закручивания нити.

    13.2. Свет и микрочастицы как объекты квантовой теории

    13.2.3. Давление света

    Свет оказывает на поверхность давление.

    Давление света равно импульсу, который передают фотоны единице площади поверхности, расположенной перпендикулярно пучку фотонов, в единицу времени:

    p = (1 + ρ) p γ (N / t) S ,

    где ρ - коэффициент отражения поверхности; N /t - число фотонов, падающих на поверхность ежесекундно (в единицу времени); p γ - импульс фотона, p γ = h ν/c или p γ = h λ ; S - площадь поверхности, расположенной перпендикулярно падающему пучку фотонов.

    Коэффициент отражения - доля отраженных от поверхности фотонов; коэффициент отражения определяется отношением

    ρ = N отр N ,

    где N - число фотонов, падающих на поверхность; N отр - число фотонов, отраженных от поверхности.

    Для поверхностей с различными свойствами коэффициент отражения имеет различные значения:

    • для зеркальной поверхности ρ = 1;
    • зачерненной поверхности ρ = 0.

    Коэффициент поглощения - доля поглощенных поверхностью фотонов; коэффициент поглощения определяется отношением

    ρ * = N погл N ,

    где N погл - число фотонов, поглощенных поверхностью.

    Для поверхностей с различными свойствами коэффициент поглощения имеет различные значения:

    • для зеркальной поверхности ρ * = 0;
    • зачерненной поверхности ρ * = 1.

    Сила давления света на поверхность

    F = pS ,

    где p - давление света; S - площадь поверхности, расположенной перпендикулярно падающему пучку фотонов.

    Сила давления связана с мощностью пучка фотонов формулой

    F = (1 + ρ) P c ,

    где ρ - коэффициент отражения; P - мощность пучка фотонов, P = Nh ν/t = Nhc /λt ; ν - частота фотона; λ - длина волны фотона; c - скорость света в вакууме; h - постоянная Планка, h = 6,626 ⋅ 10 −34 Дж ⋅ с; N /t - число фотонов, падающих на поверхность ежесекундно.

    Сила давления света на поверхность не зависит от площади поверхности , а определяется только мощностью падающего пучка и отражающими свойствами поверхности.

    Пример 6. На некоторую поверхность ежесекундно падает 1,0 ⋅ 10 19 фотонов с длиной волны 560 нм. При нормальном падении на площадку 10 см 2 свет оказывает давление 20 мкПа. Найти коэффициент поглощения этой поверхности.

    Решение . Давление света равно импульсу, который передают все фотоны единице площади поверхности, расположенной перпендикулярно пучку фотонов, в единицу времени:

    p = (1 + ρ) p γ (N / t) S = (1 + ρ) h N λ S t ,

    где ρ - коэффициент отражения; p γ - импульс одного фотона, p γ = h /λ; λ - длина волны света, падающего на поверхность, λ = 560 нм; h - постоянная Планка, h = 6,63 ⋅ 10 −34 Дж ⋅ с; N /t - число фотонов, падающих на поверхность ежесекундно, N /t = 1,0 ⋅ 10 19 c −1 ; S - площадь поверхности, расположенной перпендикулярно падающему пучку фотонов, S = 10 см 2 .

    Выразим отсюда коэффициент отражения поверхности:

    ρ = p λ S h (N / t) − 1 ,

    где p - давление света на поверхность, p = 20 мкПа.

    Коэффициенты поглощения и отражения одной и той же поверхности связаны между собой формулой

    где ρ - коэффициент отражения поверхности; ρ * - коэффициент поглощения той же поверхности.

    Отсюда следует

    ρ * = 1 − ρ,

    или с учетом явного вида выражения для коэффициента отражения

    ρ * = 1 − (p λ S h (N / t) − 1) = 2 − p λ S h (N / t) .

    Вычислим:

    ρ * = 2 − 20 ⋅ 10 − 6 ⋅ 560 ⋅ 10 − 9 ⋅ 10 ⋅ 10 − 4 6,63 ⋅ 10 − 34 ⋅ 1,0 ⋅ 10 19 = 0,31 .

    Коэффициент поглощения данной поверхности равен 0,31.

    Коэффициент поглощения представляет собой долю поглощенных поверхностью фотонов; следовательно, можно утверждать, что 31 % падающих на поверхность фотонов поглощается этой поверхностью.

    Страница 1
    § 36. ДАВЛЕНИЕ СВЕТА. ФОТОНЫ.

    Основные формулы

    Давление, производимое светом при нормальном падении,

    p=(E e /c)*(1+ρ), или p=(1+ρ),

    где E e - облученность поверхности; с - скорость электромагнит­ного излучения в вакууме; - объемная плотность энергии излу­чения; ρ - коэффициент отражения.

    Энергия фотона

    ε = hυ=hc/λ , или ε = ħ ,

    где h - постоянная Планка; ħ=h/(2π); υ - частота света;  - круговая частота; λ - длина волны.

    Масса и импульс фотона выражаются соответственно форму­лами

    m=ε/c 2 = h/(cλ); p=mc=h/λ .
    Примеры решения задач

    Пример 1. Пучок монохроматического света с длиной волны λ = 663 нм падает нормально на зеркальную плоскую поверхность Поток энергии Ф е =0,6 Вт. Определить силу F давления, испытывае­мую этой поверхностью, а также число N фотонов, падающих на нее за время t=5 с

    Решение Сила светового давления на поверхность равна произведению светового давления р на площадь S поверхности:

    F = pS . (1)

    Световое давление может быть найдено по формуле

    P=E e (ρ+l)/c (2)

    Подставляя выражение (2) дaвлeния света в формулу (1), получим

    F= [(E e S)/c]*(ρ+1). (3)

    Так как произведение облученности E e на площадь S поверх­ности равно потоку Ф энергии излучения, падающего на поверх­ность, то соотношение (3) можно записать в виде

    F = (Ф е /с)*(ρ+1).

    После подстановки значений Ф е и с с учетом, что ρ=1 (поверх­ность зеркальная), получим

    Число N фотонов, падающих за время ∆t на поверхность, опре­деляется по формуле

    N=∆W/ε = Ф е ∆t/ε ,

    где ∆W - энергия излучения, получаемая поверхностью за время t

    Выразив в этой формуле энергию фотона через длину волны (ε =hc/λ), получим

    N = Ф е λ∆t/(hc).

    Подставив в этой формуле числовые значения величин, найдем

    N= 10 19 фотонов.

    Пример 2. Параллельный пучок света длиной волны λ=500 нм падает нормально на зачерненную поверхность, производя давление p=10 мкПа. Определить: 1) концентрацию п фотонов в пучке, 2) число n 1 фотонов, падающих на поверхность площадью 1 м 2 за вре­мя 1 с.

    Решение. 1. Концентрация п фотонов в пучке может быть найдена, как частное от деления объемной плотности энергии  на энергию ε одного фотона:

    n=/ε (1)

    Из формулы p=(1+ρ), определяющей давление света, где ρ-коэффициент отражения, найдем

     = p/(ρ+1). (2)

    Подставив выражение для из уравнения (2) в формулу (1), получим

    n = ρ/[(ρ+1)*ε]. (3)

    Энергия фотона зависит от частоты υ, а следовательно, и от длины световой волны λ:

    ε = hυ = hc/λ (4)

    Подставив выражение для энергии фотона в формулу (3), опре­делим искомую концентрацию фотонов:

    n = (ρλ)/[(ρ+1)*ε]. (5)

    Коэффициент отражения ρ для зачерненной поверхности прини­маем равным нулю.

    Подставив числовые значения в формулу (5), получим

    n=2,52*10 13 м -3 .

    2. Число n 1 фотонов, падающих на поверхность площадью 1 м 2 за время 1 с, найдем из соотношения n 1 = N /(St ), где N - число фо­тонов, падающих за время t на поверхность площадью S. Но N = ncSt , следовательно,

    n 1 =(ncSt)/(St)=nc

    Подставив сюда значения п и с, получим

    n 1 =7,56*10 21 м -2 *с -1 .

    Пример 3 . Монохроматический (λ = 0.582 мкм) пучок света падает нормально на поверхность с коэффициентом отражения ρ = 0.7. Определить число фотонов, ежесекундно падающих на 1 см 2 этой поверхности, если давление света на эту поверхность р = 1.2мкПа. Найти концентрацию фотонов в 1 см 3 падающего светового пучка.

    Решение. Давление, производимое светом на поверхность при нормальном падении, определяется формулой:

    где E - энергия, падающая на единицу поверхности за единицу времени (энергетическая освещенность), с - скорость света, ρ - коэффициент отражения поверхности.

    С другой стороны, энергетическая освещенность может быть выражена через число падающих фотонов N:

    (2)

    где
    - энергия падающего фотона. Тогда на основании (1) и (2) получим:

    (3)

    Подставляя числовые данные, получим число фотонов, падающих на 1 м 2 поверхности в течение 1 с. Соответственно на площадку S = 1 см 2 падает число фотонов N":

    (4)

    Подставляя числовые данные в системе СИ (S = 10 -4 м 2), получим
    фотонов.

    Концентрация фотонов вблизи поверхности в падающем луче определяется формулой:

    где n 0 - число фотонов в 1 м 3 . Тогда число фотонов в 1 см 3 равно

    (5)

    Подставляя числовые данные в (5) с учетом того, что V = 10 -6 м 3 , получим

    4. На зачерненную поверхность нормально падает монохроматический свет с длиной волны λ = 0,65 мкм, производя давление p =510 -6 Па. Определить концентрацию фотонов вблизи поверхности и число фотонов, падающих на площадь S = 1 м 2 в t = 1 с.


    или
    , (1)

    где Е е – энергетическая освещенность поверхности;

    с – скорость света в вакууме; ω – объемная плотность энергии.

    Объемная плотность энергии равна произведению концентрации фотонов (число фотонов в единице объема) на энергию одного фотона:

    , т.е.
    , откуда
    . (2)

    Из выражения (1) определяем объемную плотность энергии
    .

    Тогда
    , где ρ = 0 (зачерненная поверхность).

    Число фотонов, падающих на площадь S = 1 м 2 в 1 секунду, численно равно отношению энергетической освещенности к энергии одного фотона:

    .

    Из выражения (1) энергетическая освещенность


    Интенсивность люминесценции можно вычислить по формуле:

    I л = 2,3 I 0  D, откуда квантовый выход люминесценции

    Рассматриваемая формула является определением квантового выхода люминесценции, подставим числа и произведём вычисления:

    = .

    Ответ: квантовый выход люминесценции вещества 0,6.

    страница 1

    При падении электромагнитных волн на какую-нибудь поверхность они оказывают давление на эту поверхность. Давление света может быть объяснено как с электромагнитной точки зрения, так и в рамках квантовой теории.

    Пусть на поверхность металла падает нормально плоская электромагнитная волна, тогда векторы электрического и магнитного поля такой волны параллельны поверхности. Под действием электрического поля Е электроны начинают двигаться параллельно поверхности. При этом на каждый электрон, движущийся со скоростью , со стороны магнитного поля световой волны с индукцией действует сила Лоренца

    направленная внутрь металла перпендикулярно его поверхности. Таким образом, световая волна должна производить давление на поверхность металла.

    В рамках квантовой фотонной теории световое давление обусловлено тем, что каждый фотон не только несет энергию , но и обладает импульсом . Каждый поглощенный фотон передает поверхности свой импульс

    а каждый отраженный - удвоенный импульс

    Пусть на поверхность некоторого тела падает по нормали поток фотонов N ф (N ф - число фотонов, падающих на единичную площадку в единицу времени). Если поверхность тела имеет коэффициент отражения , то в единицу времени фотонов отразится от нее, а фотонов поглотится поверхностью. Импульс, получаемый единицей площади поверхности тела за единицу времени, равен

    Согласно второму закону Ньютона, есть нормальная к поверхности сила (в данном случае это сила давления), а величина - давление. Таким образом, световое давление равно

    Величина, равная произведению энергии фотона ħw на число фотонов N ф , падающих на единицу площади тела в единицу времени, есть плотность потока световой энергии R. Эту же величину можно получить, умножая среднюю плотность энергии в волне на скорость света:

    Эту формулу при и мы уже обсуждали ранее, когда рассматривали давление электромагнитных волн.

    Пример. Определим давление Р солнечного света на зачерненную пластинку, расположенную перпендикулярно солнечным лучам и находящуюся вне земной атмосферы вблизи Земли.

    Солнечная постоянная, то есть плотность потока энергии солнечного электромагнитного излучения вблизи Земли вне её атмосферы, примерно равна . Зачерненная пластинка поглощает практически всё, то есть, для оценки, можно положить . Отсюда давление

    Давление света играет огромную роль в ориентации кометных хвостов относительно Солнца. Пылевидные частицы и молекулы газов, имеющиеся в кометах, испытывают световое давление со стороны солнечных лучей, в результате которого и образуются своеобразные формы кометных хвостов, ориентированных в противоположную сторону от Солнца. (В настоящее время предполагается, что явление образования хвостов комет частично определяется «протонным» ветром, исходящим от Солнца.)


    Рис. 2.20. Давление света отклоняет хвост кометы от Солнца


    Рис. 2.21. Проект солнечного паруса на орбите Земли, движимого давлением света

    Таким образом, и электромагнитная (волновая), и фотонная (квантовая) теории с одинаковым успехом решают вопрос о механизме и закономерностях светового давления.

    Подведем итоги:

    1. В явлениях распространения и отражения света (дифракция и интерференция) свет ведет себя как волна с такими типично волновыми характеристиками, как частота и длина волны .

    2. В явлениях испускания и передачи энергии свет ведет себя как частица, характеризуемая энергией и импульсом .

    3. Постоянная Планка численно связывает корпускулярные характеристики с волновыми.

    Поэтому приходится признать за фотоном двойственную природу. Пока в нашем курсе это необычное свойство - корпускулярно-волновой дуализм - установлено только для света.


Close