С глубокой древности известно, что магнитная стрелка, свободно вращающаяся вокруг вертикальной оси, всегда устанавливается в данном месте Земли в определённом направлении (если вблизи неё нет магнитов, проводников с током, железных предметов). Этот факт объясняется тем, что вокруг Земли существует магнитное поле и магнитная стрелка устанавливается вдоль его магнитных линий. На этом и основано применение компаса (рис. 115), который представляет собой свободно вращающуюся на оси магнитную стрелку.

Рис. 115. Компас

Наблюдения показывают, что при приближении к Северному географическому полюсу Земли магнитные линии магнитного поля Земли всё под большим углом наклоняются к горизонту и около 75° северной широты и 99° западной долготы становятся вертикальными, входя в Землю (рис. 116). Здесь в настоящее время находится Южный магнитный полюс Земли , он удалён от Северного географического полюса примерно на 2100 км.

Рис. 116. Магнитные линии магнитного поля Земли

Северный магнитный полюс Земли находится вблизи Южного географического полюса, а именно на 66,5° южной широты и 140° восточной долготы. Здесь магнитные линии магнитного поля Земли выходят из Земли.

Таким образом, магнитные полюсы Земли не совпадают с её географическими полюсами . В связи с этим направление магнитной стрелки не совпадает с направлением географического меридиана. Поэтому магнитная стрелка компаса лишь приблизительно показывает направление на север.

Иногда внезапно возникают так называемые магнитные бури , кратковременные изменения магнитного поля Земли, которые сильно влияют на стрелку компаса. Наблюдения показывают, что появление магнитных бурь связано с солнечной активностью.

а - на Солнце; б - на Земле

В период усиления солнечной активности с поверхности Солнца в мировое пространство выбрасываются потоки заряженных частиц, электронов и протонов. Магнитное поле, образуемое движущимися заряженными частицами, изменяет магнитное поле Земли и вызывает магнитную бурю. Магнитные бури - явление кратковременное.

На земном шаре встречаются области, в которых направление магнитной стрелки постоянно отклонено от направления магнитной линии Земли. Такие области называют областями магнитной аномалии (в пер. с лат. «отклонение, ненормальность»).

Одна из самых больших магнитных аномалий - Курская магнитная аномалия. Причиной таких аномалий являются огромные залежи железной руды на сравнительно небольшой глубине.

Земной магнетизм ещё окончательно не объяснён. Установлено только, что большую роль в изменении магнитного поля Земли играют разнообразные электрические токи, текущие как в атмосфере (особенно в верхних её слоях), так и в земной коре.

Большое внимание изучению магнитного поля Земли уделяют при полётах искусственных спутников и космических кораблей.

Установлено, что земное магнитное поле надёжно защищает поверхность Земли от космического излучения, действие которого на живые организмы разрушительно. В состав космического излучения, кроме электронов, протонов, входят и другие частицы, движущиеся в пространстве с огромными скоростями.

Полёты межпланетных космических станций и космических кораблей на Луну и вокруг Луны позволили установить отсутствие у неё магнитного поля. Сильная намагниченность пород лунного грунта, доставленного на Землю, позволяет учёным сделать вывод, что миллиарды лет назад у Луны могло существовать магнитное поле.

Вопросы

  1. Чем объяснить, что магнитная стрелка устанавливается в данном месте Земли в определённом направлении?
  2. Где находятся магнитные полюсы Земли?
  3. Как показать, что Южный магнитный полюс Земли находится на севере, а Северный магнитный полюс - на юге?
  4. Чем объясняют появление магнитных бурь?
  5. Что такое области магнитной аномалии?
  6. Где находится область, в которой наблюдается большая магнитная аномалия?

Упражнение 43

  1. Почему стальные рельсы, долго лежащие на складах, через некоторое время оказываются намагниченными?
  2. Почему на судах, предназначенных для экспедиций по изучению земного магнетизма, запрещается использовать материалы, которые намагничиваются?

Задание

  1. Подготовьте доклад на тему «Компас, история его открытия».
  2. Поместите внутрь глобуса полосовой магнит. С помощью полученной модели ознакомьтесь с магнитными свойствами магнитного поля Земли.
  3. Используя Интернет, подготовьте презентацию по теме «История открытия Курской магнитной аномалии».

Это любопытно...

Зачем нужно магнитное поле планетам

Известно, что Земля обладает мощным магнитным полем. Магнитное поле Земли окутывает область околоземного космического пространства. Эту область называют магнитосферой, хотя по своей форме она сферой не является. Магнитосфера - самая внешняя и протяжённая оболочка Земли.

Земля постоянно находится под воздействием солнечного ветра - потока очень маленьких частиц (протонов, электронов, а также ядер и ионов гелия и др.). При вспышках на Солнце скорость этих частиц резко возрастает, и они с огромными скоростями распространяются в космическом пространстве. Если на Солнце вспышка, значит, через несколько дней следует ожидать возмущения магнитного поля Земли. Магнитное поле Земли служит своеобразным щитом, оберегая нашу планету и всё живое на ней от воздействия солнечного ветра и космических лучей. Магнитосфера способна изменить траекторию этих частиц, направляя их к полюсам планеты. В районах полюсов частицы собираются в верхних слоях атмосферы и вызывают изумительной красоты северные и южные сияния. Здесь же происходит зарождение магнитных бурь.

При вторжении частиц солнечного ветра в магнитосферу, происходит нагрев атмосферы, усиление ионизации её верхних слоев, возникновение электромагнитных шумов. При этом возникают помехи в радиосигналах, скачки напряжения, которые могут вывести из строя электрооборудование.

Магнитные бури оказывают влияние и на погоду. Они способствуют возникновению циклонов и увеличению облачности.

Учёными многих стран доказано, что магнитные возмущения оказывают воздействие на живые организмы, растительный мир и на самого человека. Исследования показали, что у людей, подверженных сердечнососудистым заболеваниям, с изменением солнечной активности возможны обострения. Могут возникнуть перепады артериального давления, учащённое сердцебиение, пониженный тонус.

Наиболее сильные магнитные бури и магнито-сферные возмущения приходятся на период роста солнечной активности.

А существует ли магнитное поле у планет Солнечной системы? Наличие или отсутствие магнитного поля планет объясняется их внутренним строением.

Самое сильное магнитное поле у планет-гигантов Юпитер является не только самой большой планетой, но и обладает самым большим магнитным полем, превосходящим магнитное поле Земли в 12 000 раз. Магнитное поле Юпитера, окутывая его, распространяется на расстояние 15 радиусов планеты (радиус Юпитера 69 911 км). Сатурн, как и Юпитер, имеет мощную магнитосферу, возникающую из-за металлического водорода, который в жидком состоянии находится в глубине Сатурна. Любопытно, что Сатурн - единственная планета, у которой ось вращения планеты практически совпадает с осью магнитного поля.

Учёные утверждают, что и Уран, и Нептун обладают мощными магнитными полями. Но вот что интересно: магнитная ось Урана отклонена от оси вращения планеты на 59°, Нептуна - на 47°. Такая ориентация магнитной оси относительно оси вращения придаёт магнитосфере Нептуна довольно оригинальную и своеобразную форму. Она постоянно видоизменяется по мере вращения планеты вокруг своей оси. А вот магнитосфера Урана по мере удаления от планеты закручивается в длинную спираль. Учёные полагают, что магнитное поле планеты обладает двумя северными и двумя южными магнитными полюсами.

Исследования показали, что магнитное поле Меркурия в 100 раз меньше земного, а у Венеры оно незначительное. При изучении Марса аппараты «Марс-3» и «Марс-5» обнаружили магнитное поле, которое концентрируется в южном полушарии планеты. Учёные полагают, что такая форма поля может быть вызвана гигантскими столкновениями планеты.

Так же как и у Земли, магнитное поле других планет Солнечной системы отражает солнечный ветер, защищая их от разрушительного воздействия радиоактивного излучения Солнца.

Экспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами. Если два витка с токами поместить в какую-либо среду, то сила магнитного взаимодействия между токами изменяется. Этот опыт показывает, что индукция магнитного поля, создаваемого электрическими токами в веществе, отличается от индукции магнитного поля, создаваемого теми же токами в вакууме.

Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью :

Магнитные свойства веществ определяются магнитными свойствами атомов или элементарных частиц (электронов, протонов и нейтронов), входящих в состав атомов. В настоящее время установлено, что магнитные свойства протонов и нейтронов почти в 1000 раз слабее магнитных свойств электронов. Поэтому магнитные свойства веществ в основном определяются электронами, входящими в состав атомов.

Одним из важнейших свойств электрона является наличие у него не только электрического, но и собственного магнитного поля. Собственное магнитное поле электрона называют спиновым (spin - вращение). Электрон создает магнитное поле также и за счет орбитального движения вокруг ядра, которое можно уподобить круговому микротоку. Спиновые поля электронов и магнитные поля, обусловленные их орбитальными движениями, и определяют широкий спектр магнитных свойств веществ.

Вещества крайне разнообразны по своим магнитным свойствам. У большинства веществ эти свойства выражены слабо. Слабо-магнитные вещества делятся на две большие группы - парамагнетики и диамагнетики . Они отличаются тем, что при внесении во внешнее магнитное поле парамагнитные образцы намагничиваются так, что их собственное магнитное поле оказывается направленным по внешнему полю, а диамагнитные образцы намагничиваются против внешнего поля. Поэтому у парамагнетиков μ > 1, а у диамагнетиков μ < 1. Отличие μ от единицы у пара- и диамагнетиков чрезвычайно мало. Например, у алюминия, который относится к парамагнетикам, μ - 1 ≈ 2,1·10 -5 , у хлористого железа (FeCl 3) μ - 1 ≈ 2,5·10 -3 . К парамагнетикам относятся также платина, воздух и многие другие вещества. К диамагнетикам относятся медь (μ - 1 ≈ -3·10 -6), вода (μ - 1 ≈ -9·10 -6), висмут (μ - 1 ≈ -1,7·10 -3) и другие вещества. Образцы из пара- и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному - парамагнетики втягиваются в область сильного поля, диамагнетики - выталкиваются (рис. 1.19.1).

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле. У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против направления индукции внешнего поля.

В атомах парамагнитных веществ магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие - микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по направлению индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля. Полная индукция магнитного поля в образце складывается из индукции внешнего магнитного поля и индукции собственного магнитного поля, возникшего в процессе намагничивания. Механизм намагничивания парамагнетиков очень похож на механизм поляризации полярных диэлектриков. Диамагнетизм не имеет аналога среди электрических свойств вещества.

Следует отметить, что диамагнитными свойствами обладают атомы любых веществ. Однако во многих случаях диамагнетизм атомов маскируется более сильным парамагнитным эффектом. Явление диамагнетизма было открыто Майклом Фарадеем в 1845 г.

Вещества, способные сильно намагничиваться в магнитном поле, называются ферромагнетиками . Магнитная проницаемость ферромагнетиков по порядку величины лежит в пределах 10 2 -10 5 . Например, у стали μ ≈ 8000, у сплава железа с никелем магнитная проницаемость достигает значений 250000.

К рассматриваемой группе относятся четыре химических элемента: железо, никель, кобальт, гадолиний. Из них наибольшей магнитной проницаемостью обладает железо. Поэтому вся эта группа получила название ферромагнетиков.

Ферромагнетиками могут быть различные сплавы, содержащие ферромагнитные элементы. Широкое применение в технике получили керамические ферромагнитные материалы - ферриты.

Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри ), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770 °C, у кобальта 1130 °C, у никеля 360 °C.

Ферромагнитные материалы делятся на две большие группы - на магнито-мягкие и магнито-жесткие материалы. Магнито-мягкие ферромагнитные материалы почти полностью размагничиваются, когда внешнее магнитное поле становится равным нулю. К магнито-мягким материалам относится, например, чистое железо, электротехническая сталь и некоторые сплавы. Эти материалы применяются в приборах переменного тока, в которых происходит непрерывное перемагничивание, то есть изменение направления магнитного поля (трансформаторы, электродвигатели и т. п.).

Магнито-жесткие материалы в значительной мере сохраняют свою намагниченность и после удаления их из магнитного поля. Примерами магнито-жестких материалов могут служить углеродистая сталь и ряд специальных сплавов. Магнито-жесткие метериалы используются в основном для изготовления постоянных магнитов .

Магнитная проницаемость μ ферромагнетиков не является постоянной величиной ; она сильно зависит от индукции B 0 внешнего поля. Типичная зависимость μ (B 0) приведена на рис. 1.19.2. В таблицах обычно приводятся значения максимальной магнитной проницаемости.

Непостоянство магнитной проницаемости приводит к сложной нелинейной зависимости индукции B магнитного поля в ферромагнетике от индукции B 0 внешнего магнитного поля. Характерной особенностью процесса намагничивания ферромагнетиков является так называемый гистерезис , то есть зависимость намагничивания от предыстории образца. Кривая намагничивания B (B 0) ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса (рис. 1.19.3).

Из рис. 1.19.3 видно, что при наступает магнитное насыщение - намагниченность образца достигает максимального значения.

Если теперь уменьшать магнитную индукцию B 0 внешнего поля и довести ее вновь до нулевого значения, то ферромагнетик сохранит остаточную намагниченность - поле внутри образца будет равно B r . Остаточная намагниченность образцов позволяет создавать постоянные магниты. Для того, чтобы полностью размагнитить образец, необходимо, изменив знак внешнего поля, довести магнитную индукцию B 0 до значения -B 0c , которое принято называть коэрцитивной силой . Далее процесс перемагничивания может быть продолжен, как это указано стрелками на рис. 1.19.3.

У магнито-мягких материалов значения коэрцитивной силы B 0c невелико - петля гистерезиса таких материалов достаточно узкая. Материалы с большим значением коэрцитивной силы, то есть имеющие широкую петлю гистерезиса, относятся к магнито-жестким.

Природа ферромагнетизма может быть до конца понята только на основе квантовых представлений. Качественно ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области размером порядка 10 -2 -10 -4 см. Эти области называются доменами . Каждый домен представляет из себя небольшой постоянный магнит.

В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей в различных доменах ориентированы в большом кристалле хаотически. Такой кристалл в среднем оказывается ненамагниченным. При наложении внешнего магнитного поля происходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. С увеличением индукции внешнего поля возрастает магнитная индукция намагниченного вещества. В очень сильном внешнем поле домены, в которых собственное магнитное поле совпадает по направлению с внешним полем, поглощают все остальные домены, и наступает магнитное насыщение. Рис. 1.19.4 может служить качественной иллюстрацией процесса намагничивания ферромагнитного образца.

Рисунок 1.19.4.

Намагничивание ферромагнитного образца. (1) B 0 = 0; (2) B 0 = B 01 ; (3) B 0 = B 02 > B 01

Магнитные поля возникают в природе и могут создаваться искусственно. Человек заметил их полезные характеристики, которые научился применять в повседневной жизни. Что же является источником магнитного поля?

Как развивалось учение о магнитном поле

Магнитные свойства некоторых веществ были замечены еще в древности, но по-настоящему их изучение началось в средневековой Европе. Используя мелкие стальные иголки, ученый из Франции Перегрин обнаружил пересечение силовых магнитных линий в определенных пунктах – полюсах. Только через три века, руководствуясь этим открытием, Гилберт продолжил его изучение и впоследствии защищал свою гипотезу, что Земля обладает собственным магнитным полем.

Бурное развитие теории магнетизма началось с начала 19-го века, когда Ампер обнаружил и описал влияние электрического поля на возникновение магнитного, а открытие Фарадеем электромагнитной индукции установило и обратную взаимосвязь.

Что такое магнитное поле

Магнитное поле проявляется в силовом воздействии на электрозаряды, находящиеся в движении, или на тела, у которых имеется магнитный момент.

  1. Проводники, по которым проходит электрический ток;
  2. Постоянные магниты;
  3. Изменяющееся электрическое поле.

Первопричина возникновения магнитного поля идентична для всех источников: электрические микрозаряды – электроны, ионы или протоны обладают собственным магнитным моментом либо находятся в направленном движении.

Важно! Взаимно порождают друг друга электрические и магнитные поля, меняющиеся с течением времени. Эта взаимосвязь определяется уравнениями Максвелла.

Характеристики магнитного поля

Характеристиками магнитного поля являются:

  1. Магнитный поток, скалярная величина, определяющая, сколько силовых линий магнитного поля проходит через заданное сечение. Обозначается буквой F. Рассчитывается по формуле:

F = B x S x cos α,

где В – вектор магнитной индукции, S – сечение, α – угол наклона вектора к перпендикуляру, проведенному к плоскости сечения. Единица измерения – вебер (Вб);

  1. Вектор магнитной индукции (В) показывает силу, действующую на зарядоносители. Он направлен в сторону северного полюса, куда указывает обычная магнитная стрелка. Количественно магнитную индукцию измеряют в теслах (Тл);
  2. Напряженность МП (Н). Определяется магнитной проницаемостью различных сред. В вакууме проницаемость принимается за единицу. Направление вектора напряженности совпадает с направлением магнитной индукции. Единица измерения – А/м.

Как представить магнитное поле

Легко видеть проявления магнитного поля на примере постоянного магнита. Он имеет два полюса, и в зависимости от ориентации два магнита притягиваются или отталкиваются. Магнитное поле характеризует процессы, происходящие при этом:

  1. МП математически описывается, как векторное поле. Оно может быть построено посредством многих векторов магнитной индукции В, каждый из которых направлен в сторону северного полюса стрелки компаса и имеет длину, зависящую от магнитной силы;
  2. Альтернативный способ представления заключается в использовании силовых линий. Эти линии никогда не пересекаются, нигде не начинаются и не останавливаются, образуя замкнутые петли. Линии МП объединяются в области с более частым расположением, где магнитное поле является самым сильным.

Важно! Плотность силовых линий указывает на прочность магнитного поля.

Хотя в действительности МП видеть нельзя, силовые линии легко визуализировать в реальном мире, расположив железные опилки в МП. Каждая частица ведет себя как крошечный магнит с северным и южным полюсом. Результатом является шаблон, похожий на силовые линии. Ощутить воздействие МП человек не способен.

Измерение магнитного поля

Так как это величина векторная, для измерения МП существует два параметра: сила и направление. Направление легко измерить с помощью компаса, соединенного с полем. Пример – компас, помещенный в магнитное поле Земли.

Измерение других характеристик значительно сложнее. Практические магнитометры появились только в 19-м веке. Большинство из них работают, используя силу, которую электрон чувствует при движении по МП.

Очень точное измерение малых магнитных полей стало практически осуществимо с момента открытия в 1988 году гигантского магнитосопротивления в слоистых материалах. Это открытие в фундаментальной физике было быстро применено к магнитной технологии жесткого диска для хранения данных на компьютерах, приведшее к тысячекратному увеличению емкости хранилища всего за несколько лет.

В общепринятых системах измерений МП измеряется в тестах (Тл) или в гауссах (Гс). 1 Тл = 10000 Гс. Гаусс часто используется, потому что Тесла – слишком большое поле.

Интересно. Маленький магнит на холодильнике создает МП, равное 0,001 Тл, а магнитное поле Земли в среднем – 0,00005 Тл.

Природа возникновения магнитного поля

Магнетизм и магнитные поля являются проявлениями электромагнитной силы. Есть два возможных способа, как организовать энергозаряд в движении и, следовательно, магнитное поле.

Первый – это подсоединить провод к источнику тока, вокруг него образуется МП.

Важно! По мере увеличения тока (количества зарядов в движении) пропорционально увеличивается МП. При удалении от провода поле снижается в зависимости от расстояния. Это описывается законом Ампера.

Некоторые материалы, имеющие более высокую магнитопроницаемость, способны концентрировать магнитные поля.

Поскольку магнитное поле – это вектор, необходимо определить его направление. Для обычного тока, протекающего через прямой провод, направление можно найти по правилу правой руки.

Чтобы использовать правило, надо представить, что провод обхвачен правой рукой, а большой палец указывает направление тока. Тогда четыре остальных пальца покажут направление вектора магнитной индукции вокруг проводника.

Второй способ создания МП – использование факта, что в некоторых веществах появляются электроны, обладающие собственным магнитным моментом. Так работают постоянные магниты:

  1. Хотя атомы часто имеют много электронов, они в основном соединяются так, что полное магнитное поле пары компенсируется. Говорят, что два электрона, спаренные таким образом, имеют противоположный спин. Поэтому, чтобы что-то намагнитить, нужны атомы, которые имеют один или несколько электронов с одинаковым спином. Например, железо имеет четыре таких электрона и подходит для изготовления магнитов;
  2. Миллиарды электронов, находящиеся в атомах, могут быть случайно ориентированы, и общего МП не будет, независимо от того, сколько неспаренных электронов имеет материал. Он должен быть стабильным при невысокой температуре, чтобы обеспечить общую предпочтительную ориентацию электронов. Высокая магнитопроницаемость обуславливает намагничивание таких веществ при определенных условиях вне влияния МП. Это ферромагнетики;
  3. Другие материалы могут проявлять магнитные свойства при наличии внешнего МП. Внешнее поле служит для выравнивания всех электронных спинов, которое исчезает после удаления МП. Это вещества – парамагнетики. Металл двери холодильника является примером парамагнетика.

Землю можно представить в виде конденсаторных обкладок, заряд которых имеет противоположный знак: «минус» – у земной поверхности и «плюс» – в ионосфере. Между ними находится атмосферный воздух в качестве изоляционной прокладки. Гигантский конденсатор сохраняет постоянный заряд, благодаря влиянию земного МП. Пользуясь этими знаниями, можно создать схему получения электро энергии из магнитного поля Земли. Правда, в результате будут невысокие значения напряжения.

Нужно взять:

  • заземляющее устройство;
  • провод;
  • трансформатор Теслы, способный генерировать высокочастотные колебания и создавать коронный разряд, ионизируя воздух.

Катушка Теслы будет выступать в роли эмиттера электронов. Вся конструкция соединяется вместе, причем для обеспечения достаточной разности потенциалов трансформатор должен быть поднят на значительную высоту. Таким образом, будет создана электрическая цепь, по которой будет протекать маленький ток. Получить большое количество электроэнергии, пользуясь этим устройством, невозможно.

Электричество и магнетизм доминируют во многих мирах, окружающих человека: от самых фундаментальных процессов в природе до ультрасовременных электронных устройств.

Видео

Для чего нужно магнитное поле Земли, Вы узнаете из этой статьи.

Какое значение магнитного поля Земли?

В первую очередь, оно защищает искусственные спутники и жителей планеты от действия частиц из космоса. К ним относят заряженные, ионизированные частицы солнечного ветра. Когда они попадают в нашу атмосферу, магнитное поле меняет их траекторию движения и направляет вдоль линии поля.

К тому же, в эпоху новых технологий мы вошли благодаря нашему магнитному полю. Все современные, продвинутые девайсы, которые работают, используя самые разные накопители памяти (диски, карты) – зависят напрямую от магнитного поля. Его напряженность и стабильность непосредственно оказывает влияние на абсолютно все информационные, компьютерные системы, так как вся информация, необходимая для их правильной работы, размещена на магнитных носителях.

Поэтому с уверенностью можно сказать, что процветание современной цивилизации, «жизнеспособность» ее технологий тесным образом зависит от состояния магнитого поля нашей планеты.

Что такое магнитное поле Земли?

Магнитное поле Земли являет собой область вокруг планеты, где воздействуют магнитные силы.

Что касается его происхождения, то данный вопрос окончательно до сих пор не разрешен. Но большая часть исследователей склоняются к тому, что наличием магнитного поля наша планета обязана ядру. Оно состоит из внутренней твердой и наружной жидкой частей. Вращение Земли способствуют постоянным течениям в жидком ядре. А это приводит к возникновению магнитного поля вокруг них.

Большая часть планет Солнечной системы обладают магнитными полями в той или иной степени. Если их разместить в ряд по уменьшению дипольного магнитного момента, то получится такая картинка: Юпитер, Сатурн, Земля, Меркурий и Марс. Главная причина возникновения его – это наличие жидкого ядра.


Close