Оговоримся сразу, азот в воздухе занимает большую часть, однако и химический состав оставшейся доли весьма интересен и разнообразен. Если коротко, то список основных элементов выглядит следующим образом.

Однако дадим и небольшие пояснения по функциям этих химических элементов.

1. Азот

Содержание азота в воздухе – 78% по объему и 75% по массе, то есть этот элемент доминирует в атмосфере, имеет звание одного из самых распространенных на Земле, и, кроме того, содержится и за пределами зоны обитания человека – на Уране, Нептуне и в межзвездных пространствах. Итак, сколько азота в воздухе, мы уже разобрались, остался вопрос о его функции. Азот необходим для существования живых существ, он входит в состав:

  • белков;
  • аминокислот;
  • нуклеиновых кислот;
  • хлорофилла;
  • гемоглобина и др.

В среднем около 2% живой клетки составляют как раз атомы азота, что объясняет, зачем столько азота в воздухе в процентах объема и массы.
Азот также является одним из инертных газов, добываемых из атмосферного воздуха. Из него синтезируют аммиак, используют для охлаждения и в других целях.

2. Кислород

Содержание кислорода в воздухе – один из самых популярных вопросов. Сохраняя интригу, отвлечемся на один забавный факт: кислород открыли дважды – в 1771 и 1774 годах, однако из-за разницы в публикациях открытия, почести открытия элемента достались английскому химику Джозефу Пристли, который фактически выделил кислород вторым. Итак, доля кислорода в воздухе колеблется около 21% по объему и 23% по массе. Вместе с азотом эти два газа образуют 99% всего земного воздуха. Однако процент кислорода в воздухе меньше, чем азота, и при этом мы не испытываем проблем с дыханием. Дело в том, что количество кислорода в воздухе оптимально рассчитано именно для нормального дыхания, в чистом виде этот газ действует на организм подобно яду, приводит к затруднениям в работе нервной системы, сбоям дыхания и кровообращения. При этом недостаток кислорода также негативно сказывается на здоровье, вызывая кислородное голодание и все связанные с ним неприятные симптомы. Поэтому сколько кислорода в воздухе содержится, столько и нужно для здорового полноценного дыхания.

3. Аргон

Аргон в воздухе занимает третье место, он не имеет запаха, цвета и вкуса. Значимой биологической роли этого газа не выявлено, однако он обладает наркотическим эффектом и даже считается допингом. Добытый из атмосферы аргон используют в промышленности, медицине, для создания искусственной атмосферы, химического синтеза, пожаротушения, создания лазеров и пр.

4. Углекислый газ

Углекислый газ составляет атмосферу Венеры и Марса, его процент в земном воздухе куда ниже. При этом огромное количество углекислоты содержится в океане, он регулярно поставляется всеми дышащими организмами, выбрасывается за счет работы промышленности. В жизни человека углекислый газ используется в пожаротушении, пищевой промышленности как газ и как пищевая добавка Е290 – консервант и разрыхлитель. В твердом виде углекислота – один из самых известных хладагентов «сухой лед».

5. Неон

Тот самый загадочный свет дискотечных фонарей, яркие вывески и современные фары используют пятый по распространенности химический элемент, который также вдыхает человек – неон. Как и многие инертные газы, неон оказывает на человека наркотическое действие при определенном давлении, однако именно этот газ используют в подготовке водолазов и других людей, работающих при повышенном давлении. Также неоново-гелиевые смеси используются в медицине при расстройствах дыхания, сам неон используют для охлаждения, в производстве сигнальных огней и тех самых неоновых ламп. Однако, вопреки стереотипу, неоновый свет не синий, а красный. Все остальные цвета дают лампы с другими газами.

6. Метан

Метан и воздух имеют очень древнюю историю: в первичной атмосфере, еще до появления человека, метан был в куда большем количестве. Сейчас этот газ, добываемый и используемый как топливо и сырье в производстве, не так широко распространен в атмосфере, но по-прежнему выделяется из Земли. Современные исследования устанавливают роль метана в дыхании и жизнедеятельности организма человека, однако авторитетных данных на этот счет пока нет.

7. Гелий

Посмотрев, сколько гелия в воздухе, любой поймет, что этот газ не относится к числу первостепенных по важности. Действительно, сложно определить биологическое значение этого газа. Не считая забавного искажения голоса при вдыхании гелия из шарика 🙂 Однако гелий широко применяется в промышленности: в металлургии, пищевой промышленности, для наполнения воздухоплавающих судов и метеорологических зондов, в лазерах, ядерных реакторах и т.д.

8. Криптон

Речь не идет о родине Супермена 🙂 Криптон – инертный газ, который в три раза тяжелее воздуха, химически инертен, добывается из воздуха, используется в лампах накаливания, лазерах и все еще активно изучается. Из интересных свойств криптона стоит отметить, что при давлении в 3,5 атмосферы он оказывает наркотический эффект на человека, а при 6 атмосферах приобретает резкий запах.

9. Водород

Водород в воздухе занимает 0,00005% по объему и 0,00008% по массе, но при этом именно он – самый распространенный элемент во Вселенной. О его истории, производстве и применении вполне можно написать отдельную статью, поэтому сейчас ограничимся небольшим списком отраслей: химическая, топливная, пищевая промышленности, авиация, метеорология, электроэнергетика.

10. Ксенон

Последний в составе воздуха, изначально и вовсе считавшийся только примесью к криптону. Его название переводится как «чужой», а процент содержания и на Земле, и за ее пределами минимальный, что обусловило его высокую стоимость. Сейчас без ксенона не обходятся: производство мощных и импульсных источников света, диагностика и наркоз в медицине, двигатели космических аппаратов, ракетное топливо. Кроме того, при вдыхании ксенон значительно понижает голос (обратный эффект гелию), а с недавнего времени вдыхание этого газа причислено к списку допингов.

Воздух жаркого, солнечного юга и сурового, холодного севера содержит одинаковое количество кислорода.

Один литр воздуха всегда содержит 210 кубических сантиметров кислорода, что составляет 21 объемный процент.

Больше всего в воздухе азота - его содержится в литре 780 кубических сантиметров, или 78 процентов по объему. В воздухе имеется также небольшое количество инертных газов. Газы эти получили название инертных потому, что они почти не вступают в соединение с другими элементами.

Из инертных газов в воздухе больше всего аргона - его в литре около 9 кубических сантиметров. В значительно меньших количествах в воздухе находится неона: в литре воздуха его насчитывается 0,02 кубического сантиметра. Еще меньше гелия - его всего 0,005 кубического сантиметра. Криптона в 5 раз меньше, чем гелия, - 0,001 кубического сантиметра, а ксенона совсем мало - 0,00008 кубического сантиметра.

В состав воздуха входят и газообразные химические соединения, например - двуокись углерода, или углекислый газ (СО 2). Количество углекислого газа в воздухе колеблется от 0,3 до 0,4 кубического сантиметра в литре. Непостоянно также содержание в воздухе паров воды. В сухую и жаркую погоду их меньше, а в дождливую - больше.

Состав воздуха можно выразить и в весовых процентах. Зная вес 1 литра воздуха и удельный вес каждого газа, входящего в его состав, легко от объемных величин перейти к весовым. Азота в воздухе содержится около 75,5, кислорода - 23,1, аргона- 1,3 и углекислого газа (двуокиси углерода) -0,04 весового процента.

Разница между весовыми и объемными процентами объясняется различными удельными весами азота, кислорода, аргона и углекислого газа.

Кислород, например, легко окисляет медь при высокой температуре. Поэтому, если пропустить воздух через трубку, наполненную раскаленными медными стружками, то при выходе из трубки он не будет содержать кислород. Удалить кислород из воздуха можно также фосфором. При горении фосфор жадно соединяется с кислородом, образуя фосфорный ангидрид (Р 2 О 5).

Состав воздуха был определен в 1775 году Лавуазье.

Нагревая небольшое количество металлической ртути в стеклянной реторте, Лавуазье подвел узкий конец реторты под стеклянный колпак, который был опрокинут в сосуд, наполненный ртутью. Двенадцать суток длился этот опыт. Ртуть в реторте, нагретая почти до кипения, все больше и больше покрывалась красной окисью. Одновременно уровень ртути в опрокинутом колпаке стал заметно подниматься над уровнем ртути сосуда, в котором находился колпак. Ртуть в реторте, окисляясь, забирала из воздуха все больше кислорода, давление в реторте и колпаке упало, и вместо израсходованного кислорода в колпак всасывалась ртуть.

Когда весь кислород был израсходован и окисление ртути прекратилось, приостановилось и всасывание ртути в колпак. Объем ртути в колпаке был измерен. Оказалось, что он составлял V 5 часть общего объема колпака и реторты.

Газ, оставшийся в колпаке и реторте, не поддерживал горения и жизни. Эта часть воздуха, занимавшая почти 4/6 объема, была названа азотом .

Более точными опытами в конце XVIII столетия было установлено, что воздух содержит по объему 21 процент кислорода и 79 процентов азота.

И только в конце XIX столетия стало известно, что в состав воздуха входят аргон, гелий и другие инертные газы.

Атмосферный воздух представляет собой смесь различных газов. В его составе имеются постоянные компоненты атмосферы (кислород, азот, углекислый газ), инертные газы (аргон, гелий, неон, криптон, водород, ксенон, радон), небольшие количества озона, закиси азота, метана, йода, водяных паров, а также в переменных количествах различные примеси природного происхождения и загрязнения, образующиеся в результате производственной деятельности человека.

Кислород (О2) самая важная для человека часть воздуха. Он необходим для осуществления окислительных процессов в организме. В атмосферном воздухе содержание кислорода равно 20,95 %, в выдыхаемом человеком воздухе - 15,4-16 %. Снижение его в атмосферном воздухе до 13-15 % приводит к нарушению физиологических функций, а до 7-8 % - к смертельному исходу.

Азот (N) - является основной составной частью атмосферного воздуха. Вдыхаемый и выдыхаемый человеком воздух содержит примерно одно и то же количество азота - 78,97-79,2 %. Биологическая роль азота заключается, главным образом, в том, что он является разбавителем кислорода, поскольку в чистом кислороде жизнь невозможна. При увеличении содержания азота до 93 % наступает смерть.

Диоксид углерода (углекислый газ), СО2 - является физиологическим регулятором дыхания. Содержание в чистом воздухе составляет 0,03 %, в выдыхаемом человеком - 3 %.

Снижение концентрации СО2 во вдыхаемом воздухе не представляет опасности, т.к. необходимый уровень его в крови поддерживается регуляторными механизмами за счет выделения при обменных процессах.

Повышение содержания углекислого газа во вдыхаемом воздухе до 0,2 % вызывает у человека нарушение самочувствия, при 3-4 % наблюдается возбужденное состояние, головная боль, шум в ушах, сердцебиение, замедление пульса, а при 8 % возникает тяжелое отравление, потеря сознания и наступает смерть.

За последнее время концентрация диоксида углерода в воздухе промышленных городов увеличивается в результате интенсивного загрязнения воздуха продуктами сгорания топлива. Повышение в атмосферном воздухе СО2 приводит к появлению в городах токсических туманов и «парниковому эффекту», связанному с задержкой углекислотой теплового излучения земли.

Повышение содержания СО2 сверх установленной нормы свидетельствует об общем ухудшении санитарного состояния воздуха, т.к наряду с диоксидом углерода могут накапливаются другие токсические вещества, может ухудшается ионизационный режим, возрастать запыленность и микробная загрязненность.

Озон (О3). Основное его количество отмечается на уровне 20-30 км от поверхности Земли. В приземных слоях атмосферы содержится ничтожно малое количество озона - не более 0,000001 мг/л. Озон защищает живые организмы земли от губительного действия коротковолновой ультрафиолетовой радиации и одновременно поглощает длинноволновую инфракрасную радиацию, исходящую от Земли, предохраняя ее от чрезмерного охлаждения. Озон обладает окислительными способностями, поэтому в загрязненном воздухе городов его концентрация ниже, чем в сельской местности. В связи с этим озон считался показателем чистоты воздуха. Однако в последнее время установлено, что озон образуется в результате фотохимических реакций при формировании смога, поэтому обнаружение озона в атмосферном воздухе крупных городов считают показателем его загрязнения.

Инертные газы - не имеют выраженного гигиенического и физиологического значения.

Хозяйственно-производственная деятельность человека является источником загрязнения воздуха различными газообразными примесями и взвешенными частицами. Повышенное содержание вредных веществ в атмосфере и в воздухе помещений неблагоприятно сказывается на организме человека. В связи с этим важнейшей гигиенической задачей является нормирование их допустимого содержания в воздухе.

Санитарно-гигиеническое состояние воздуха принято оценивать по предельно допустимым концентрациям (ПДК) вредных веществ в воздухе рабочей зоны.

ПДК вредных веществ в воздухе рабочей зоны - это концентрация, которая при ежедневной 8-часовой работе, но не более 41 час в неделю, в продолжение всего рабочего стажа не вызывает заболеваний или отклонений в состоянии здоровья настоящего и последующих поколений. Устанавливают ПДК среднесуточную и максимально разовую (действие до 30 мин в воздухе рабочей зоны). ПДК для одного и того же вещества может быть различной в зависимости от длительности его воздействия на человека.

На пищевых предприятиях основными причинами загрязнение воздуха вредными веществами являются нарушения технологического процесса и аварийные ситуации (канализации, вентиляции и др.).

Гигиеническую опасность в воздухе помещений представляют оксид углерода, аммиак, сероводород, сернистый газ, пыль и др., а также загрязнение воздуха микроорганизмами.

Оксид углерода (СО) - газ без запаха и цвета, попадает в воздух как продукт неполного сгорания жидкого и твердого топлива. Он вызывает острое отравление при концентрации в воздухе 220-500 мг/м3 и хроническое отравление - при постоянном вдыхании концентрации 20-30 мг/м3. Среднесуточная ПДК оксида углерода в атмосферном воздухе - 1 мг/м3, в воздухе рабочей зоны - от 20 до 200 мг/м3 (в зависимости от длительности работы).

Диоксид серы (S02) - наиболее часто встречающаяся примесь атмосферного воздуха, поскольку сера содержится в различных видах топлива. Этот газ обладает общетоксическим действием и вызывает заболевания дыхательных путей. Раздражающее действие газа обнаруживается при концентрации его в воздухе свыше 20 мг/м3. В атмосферном воздухе среднесуточная ПДК диоксида серы - 0,05 мг/м3, в воздухе рабочей зоны - 10 мг/м3.

Сероводород (H2S) - обычно попадает в атмосферный воздух с отходами химических, нефтеперерабатывающих и металлургических заводов, а также образуется и может загрязнять воздух помещений в результате гниения пищевых отходов и белковых продуктов. Сероводород обладает общетоксическим действием и вызывает неприятные ощущения у человека при концентрации 0,04-0,12 мг/м3, а концентрация более 1000 мг/м3 может стать смертельной. В атмосферном воздухе среднесуточная ПДК сероводорода - 0,008 мг/м3, в воздухе рабочей зоны - до 10 мг/м3.

Аммиак (NH3) - накапливается в воздухе закрытых помещений при гниении белковых продуктов, неисправности холодильных установок с аммиачным охлаждением, при авариях канализационных сооружений и др. Токсичен для организма.

Акролеин - продукт разложения жира при тепловой обработке, способен вызывать в производственных условиях аллергические заболевания. ПДК в рабочей зоне - 0,2 мг/м3.

Полициклические ароматические углеводороды (ПАУ) - отмечена их связь с развитием злокачественных новообразований. Наиболее распространенным и наиболее активным из них является 3-4-бенз(а)пирен, который выделяется при сжигании топлива: каменного угля, нефти, бензина, газа. Максимальное количество 3-4-бенз(а)пирена выделяется при сжигании каменного угля, минимальное - при сжигании газа. На пищевых предприятиях источником загрязнения воздуха ПАУ может являться длительное использование перегретого жира. Среднесуточная ПДК циклических ароматических углеводородов в атмосферном воздухе не должна превышать 0,001 мг/м3.

Механические примеси - пыль, частицы почвы, дыма, золы, сажи. Запыленность возрастает при недостаточном озеленении территории, неблагоустроенных подъездных путях, нарушении сбора и вывоза отходов производства, а также при нарушении санитарного режима уборки помещений (сухая или нерегулярная влажная уборка и др.). Кроме того, запыленность помещений увеличивается при нарушениях в устройстве и эксплуатации вентиляции, планировочных решениях (например, при недостаточной изоляции кладовой овощей от производственных цехов и др.).

Воздействие пыли на человека зависит от размеров пылевых частиц и их удельного веса. Наиболее опасны для человека пылинки размером менее 1 мкм в диаметре, т.к. они легко проникают в легкие и могут стать причиной их хронического заболевания (пневмокониоз). Пыль, содержащая примеси ядовитых химических соединений, оказывает на организм токсическое действие.

ПДК сажи и копоти жестко нормируется, ввиду содержания канцерогенных углеводородов (ПАУ): среднесуточная ПДК сажи - 0,05 мг/м3.

В кондитерских цехах большой мощности возможна запыленность воздуха сахарной и мучной пылью. Пыль мучная в виде аэрозолей способна вызывать раздражение дыхательных путей, а также аллергические заболевания. ПДК мучной пыли в рабочей зоне не должна превышать 6 мг/м3. В этих пределах (2-6 мг/м3) регламентируются предельно допустимые концентрации и других видов растительной пыли, содержащей не более 0,2 % соединений кремния.

Воздух - неотъемлемое условие жизни подавляющего числа организмов на нашей планете.

Без еды человек может прожить месяц. Без воды - три дня. Без воздуха - всего несколько минут.

История исследования

Не все знают, что главный компонент нашей жизнедеятельности - крайне неоднородное вещество. Воздух - это смесь газов. Каких именно?

Долгое время считалось, что воздух представляет собой единую субстанцию, а не смесь газов. Гипотеза неоднородности появлялась в научных трудах многих ученых в разное время. Но дальше теоретических догадок никто не продвигался. Только в восемнадцатом веке шотландский химик Джозеф Блэк экспериментально доказал, что газовый состав воздуха неоднороден. Открытие было произведено в ходе очередных опытов.

Современные ученые доказали, что воздух - это смесь газов, состоящая из десяти основных элементов.

Состав отличается в зависимости от места концентрации. Определение состава воздуха происходит постоянно. От этого зависит здоровье людей. Воздух - смесь каких газов?

На возвышенностях (особенно в горах) малое содержание кислорода. Такая концентрация называется «разреженный воздух». В лесах, наоборот, содержание кислорода максимальное. В мегаполисах повышено содержание углекислого газа. Определение состава воздуха - одна из важнейших обязанностей экологических служб.

Где можно использовать воздух

  • Сжатую массу используют при закачивании воздуха под давлением. Установка до десяти бар установлена на любой станции шиномонтажа. Воздухом накачивают шины.
  • Рабочие используют отбойные молотки, пневматические пистолеты для быстрого съема/монтажа гаек и болтов. Для такого оборудования характерен малый вес и высокий коэффициент полезного действия.
  • На производствах, использующих лаки и краски, применяется для ускорения процесса сушки.
  • На автомойках сжатая воздушная масса помогает в быстрой просушке автомобилей;
  • Производственные предприятия пользуются сжатым воздухом при очистке инструментов от любых видов загрязнений. В таким образом можно очистить от стружки и опилок целые ангары.
  • Нефтехимическая промышленность уже не представляется без оборудования для продувания трубопроводов перед первым пуском.
  • При производстве оксидов и кислот.
  • Для повышения температуры технологических процессов;
  • Из воздуха добывают ;

Зачем нужен воздух живым существам

Основная задача воздуха, а точнее, одного из основных компонентов - кислорода - проникать в клетки, вследствие чего способствовать процессам окисления. Благодаря этому организм получает важнейшую для жизнедеятельности энергию.

Воздух попадает в тело через легкие, после чего распределяется по организму при помощи кровеносной системы.

Воздух - смесь каких газов?. Рассмотрим их подробнее.

Азот

Воздух - смесь газов, первым из которых является азот. Седьмой элемент периодической системы Дмитрия Менделеева. Первооткрывателем считается шотландский химик Даниил Резерфорд в 1772 г.

Входит в состав белков и нуклеиновых кислот человеческого организма. Хоть его доля в клетках невелика - не более трех процентов, газ имеет важнейшее значение для нормальной жизнедеятельности.

В составе воздуха его содержание - более семидесяти восьми процентов.

В нормальных условиях не имеет цвета и запаха. Не вступает в соединения с другими химическими элементами.

Наибольшее количество азота используют в химической промышленности, в первую очередь при изготовлении удобрений.

Используется азот в медицинской промышленности, при производстве красителей,

В косметологии при помощи газа лечат угри, рубцы, бородавки, систему терморегуляции организма.

С применением азота синтезируют аммиак, изготовляют азотную кислоту.

В химической промышленности кислород используется для окисления углеводородов в спиртах, кислотах, альдегидах, производства азотной кислоты.

Рыбная промышленность - насыщение кислородом водоемов.

Но наибольшее значение газ имеет для живых существ. При помощи кислорода организм может утилизировать (окислять) нужные белки, жиры и углеводы, превращая их в необходимую энергию.

Аргон

Газ, входящий в состав воздуха, находится на третьем месте по важности - аргон. Содержание не превышает одного процента. Является инертным газом без цвета, вкуса и запаха. Восемнадцатый элемент периодической системы.

Первое упоминание приписывается английскому химику в 1785 году. А лорд Лэрей и Уильям Рамзай получили Нобелевские премии за доказательство существования газа и опыты с ним.

Области применения аргона:

  • лампы накаливания;
  • заполнение пространства между стекол в пластиковых окнах;
  • защитная среда при сварке;
  • средство пожаротушения;
  • для очистки воздуха;
  • химический синтез.

Человеческому организму особой пользы не приносит. При высокой концентрации газа приводит к удушению.

Баллоны с аргоном серого или черного цвета.

Остальные семь элементов составляют 0,03% в воздухе.

Углекислый газ

Углекислый газ в составе воздуха не имеет цвета и запаха.

Образуется вследствие гниения или горения органических материалов, выделяется при дыхании и работе автомобилей и другого транспорта.

В теле человека образуется в тканях вследствие процессов жизнедеятельности и переносится по венозной системе в легкие.

Имеет положительное значение, т.к. при нагрузках расширяет капилляры, что обеспечивает возможность большей транспортировки веществ. Положительно влияет на миокард. Способствует увеличению частоты и силы нагрузки. Используется при коррекции гипоксии. Участвует в регуляции дыхания.

В промышленности углекислый газ получают из продуктов горения, как побочный газ химических процессов или при разделении воздуха.

Применение крайне широко:

  • консервант в пищевой промышленности;
  • сатурация напитков;
  • огнетушители и системы пожаротушения;
  • подкормка аквариумных растений;
  • защитная среда при сварке;
  • применение в баллончиках для газового оружия;
  • хладагент.

Неон

Воздух - смесь газов, пятым из которых является неон. Был открыт значительно позже - в 1898 году. Название переводится с греческого как «новый».

Одноатомный газ, который не имеет цвета и запаха.

Обладает высокой электропроводностью. Имеет завершенную электронную оболочку. Инертен.

Получают газ при помощи разделения воздуха.

Применение:

  • Инертная среда в промышленности;
  • Хладагент в криогенных установках;
  • Наполнитель газоразрядных ламп. Нашел широкое применение благодаря рекламе. Большинство цветных вывесок сделано при помощи неона. При пропускании электрического разряда лампы дают яркое цветное свечение.
  • Сигнальные огни на маяках и аэродромах. Хорошо себя зарекомендовали при сильных туманах.
  • Элемент воздушной смеси для людей при работе с высоким давлением.

Гелий

Гелий - одноатомный газ без цвета и запаха.

Применение:

  • Подобно неону, при пропускании электрического разряда дает яркий свет.
  • В промышленности - для удаления примесей из стали при выплавке;
  • Хладагент.
  • Наполнение дирижаблей и аэростатов;
  • Частично в смесях для дыхания при глубоких погружениях.
  • Теплоноситель в ядерных реакторах.
  • Главная детская радость - летающие воздушные шарики.

Для живых организмов особой пользы не представляет. В высокой концентрации может вызвать отравление.

Метан

Воздух - смесь газов, седьмым из которых является метан. Газ без цвета и запаха. В больших концентрациях взрывоопасен. Поэтому для индикации в него добавляют одоранты.

Используется чаще всего как топливо и сырье в органическом синтезе.

Домашние печи, котлы, газовые колонки работают преимущественно на метане.

Продукт жизнедеятельности микроорганизмов.

Криптон

Криптон - инертный одноатомный газ без цвета и запаха.

Применение:

  • при производстве лазеров;
  • окислитель ракетного топлива;
  • заполнение ламп накаливания.

Влияние на организм человека исследовано мало. Изучается применение при глубоководных погружениях.

Водород

Водород - бесцветный горючий газ.

Применение:

  • Химическая промышленность - изготовление аммиака, мыла, пластмасс.
  • Заполнение шаровых оболочек в метеорологии.
  • Ракетное топливо.
  • Охлаждение электрических генераторов.

Ксенон

Ксенон - одноатомный бесцветный газ.

Применение:

  • наполнение ламп накаливания;
  • в двигателях космических аппаратов;
  • в качестве наркоза.

Для человеческого организма безвреден. Особой пользы не представляет.

Приведенный в табл. 1.1 состав атмосферного воздуха претерпевает в закрытых помещениях различные изменения. Во-первых, меняется процентное содержание отдельных обязательных компонентов, и, во-вторых, появляются дополнительные, не свойственные чистому воздуху примеси. В настоящем параграфе речь пойдет об изменениях газового состава и о допустимых отклонениях его от нормального.

Важнейшими для жизнедеятельности человека газами являются кислород и углекислый газ, участвующие в газообмене человека с окружающей средой. Этот газообмен осуществляется главным образом в легких человека в процессе дыхания. Газообмен, происходящий через поверхность кожи, примерно в 100 раз меньше, чем через легкие, так как поверхность тела взрослого человека составляет приблизительно 1,75 м2, а поверхность альвеол легких - около 200 м2. Процесс дыхания сопровождается образованием в организме человека теплоты в количестве от 4,69 до 5,047 (в среднем 4,879) ккал на 1 л поглощенного кислорода (перешедшего в углекислоту). Следует заметить, что поглощается только незначительная часть содержащегося во вдыхаемом воздухе кислорода (приблизительно 20%). Так, если в атмосферном воздухе находится примерно 21% кислорода, то в выдыхаемом человеком воздухе его будет около 17%. Обычно количество выдыхаемой углекислоты меньше количества поглощенного кислорода. Отношение объемов выделяемой человеком углекислоты и поглощенного кислорода носит название дыхательного коэффициента (ДК), который обычно колеблется от 0,71 до 1. Однако если человек находится в состоянии сильного возбуждения или выполняет очень тяжелую работу, ДК может быть даже больше единицы.

Количество кислорода, необходимое человеку для поддержания нормальной жизнедеятельности, в основном зависит от интенсивности выполняемой им работы и определяется степенью нервного и мускульного напряжения. Усвоение кровью кислорода происходит лучше всего при парциальном давлении около 160 мм рт. ст., что при атмосферном давлении 760 мм рт. ст. соответствует нормальному процентному содержанию кислорода в атмосферном воздухе, т. е. 21%.

Благодаря способности человеческого организма приспособляться, нормальное дыхание может наблюдаться и при меньших количествах кислорода.

Если сокращение содержания кислорода в воздухе происходит за счет инертных газов (например, азота), то возможно значительное уменьшение количества кислорода - вплоть до 12%.

Однако в закрытых помещениях уменьшение содержания кислорода сопровождается не нарастанием концентрации инертных газов, а накоплением углекислого газа. В этих условиях предельно допустимое минимальное содержание кислорода в воздухе должно быть намного выше. Обычно в качестве нормы такой концентрации принимается содержание кислорода, равное 17% по объему. Вообще говоря, в закрытых помещениях процентное содержание кислорода никогда не снижается до этой нормы, так как гораздо раньше достигает предельного значения концентрация углекислого газа. Поэтому практически важнее установить предельно допустимые нормы содержания в закрытых помещениях не кислорода, а углекислого газа.

Углекислый газ С02 представляет собой бесцветный газ со слабым кислым вкусом и запахом; он в 1,52 раза тяжелее воздуха, слегка ядовит. Накопление углекислого газа в воздухе закрытых помещений приводит к появлению головной боли, головокружению, слабости, потере чувствительности и даже потере сознания.

Считается, что в атмосферном воздухе количество углекислого газа составляет 0,03% по объему. Это справедливо для сельских местностей. В воздухе крупных промышленных центров его содержание обычно больше. Для расчетов принимают концентрацию, равную 0,04%. В воздухе, выдыхаемом человеком, содержится примерно 4% углекислого газа.

Без каких-либо вредных последствий для человеческого организма в воздухе закрытых помещений могут быть допущены концентрации углекислого газа, значительно более высокие, чем 0,04%.

Величина предельно допустимой концентрации углекислого газа зависит от продолжительности пребывания людей в том или ином закрытом помещении и от рода их занятий. Например, для герметизированных убежищ, при размещении в них здоровых людей на срок не более 8 часов, может быть принята в качестве предельно допустимой концентрации С02 норма в 2%. При кратковременном пребывании людей эта норма может быть увеличена. Возможность пребывания человека в среде с повышенными концентрациями углекислого газа обусловлена способностью человеческого организма приспосабливаться к различным условиям. При концентрации С02 выше, чем 1%, человек начинает вдыхать значительно больше воздуха. Так, при концентрации С02 в 3% дыхание удваивается даже в состоянии покоя, что само по себе не вызывает заметных отрицательных последствий при сравнительно кратковременном пребывании в таком воздухе человека. Если же человек будет находиться в помещении с концентрацией С02 в 3% достаточно долго (3 и более суток), ему грозит потеря сознания.

При длительном пребывании людей в герметизированных помещениях и при выполнении людьми той или иной работы величина предельно допустимой концентрации углекислого газа должна быть существенно меньше 2%. Допускается колебание ее от 0,1 до 1%. Содержание углекислого газа 0,1% может считаться допустимым и для обычных негерметизированных помещений зданий и сооружений различного назначения. Более низкая концентрация углекислого газа (порядка 0,07-0,08) должна назначаться лишь для помещений лечебных и детских учреждений.

Как будет ясно из дальнейшего, требования в отношении содержания углекислого газа в воздухе помещений наземных зданий обычно легко удовлетворяются, если источниками его выделения являются люди. Иначе стоит вопрос, когда углекислый газ накапливается в производственных помещениях в результате тех или иных технологических процессов, происходящих, например, в дрожжевых, пивоваренных, гидролизных цехах. В этом случае в качестве предельно допустимой концентрации углекислого газа принимают 0,5%.



Close