Многие разрушительные процессы в нашей жизни связаны с окислением, то есть происходят при участии кислорода. Однако окислительные реакции просто необходимы для нормальной жизнедеятельности организма. Они влияют на образование энергии, восстановление, процессы гомеостаза и другие жизненно важные функции. Главное здесь – сохранить баланс и не допустить перехода границы, когда окисление превращается в нашего врага.

Процессы, происходящие в организме человека, неизменно связаны с реакцией окисления. При этом сложные вещества распадаются (окисляются) до более простых и выделяется энергия, необходимая для жизни.

Однако результаты подобных окислительных процессов могут иметь два итога: положительный и отрицательный.

Результаты окислительных реакций в организме

Баланс окислительных и антиокислительных процессов – залог долголетия

Необходимое условие нормального функционирования всех систем организма и здоровья человека – баланс между окислительными и антиокислительными процессами. Смещение этого явления в ту или другую сторону может являться как патологией, так и приспособительной реакцией.

Если окислительных процессов становится больше, то нашему организму приходится нелегко. Большое количество свободных радикалов (которые образуются в процессе окисления) вызывает оксидативный стресс, при котором поражаются здоровые клетки организма.

Это может привести к развитию злокачественных опухолей, преждевременному старению и серьезным заболеваниям. Различные вирусы активнее проникают в организм, так как он не защищен, а мы становимся более уязвимы для инфекционных заболеваний.

Когда организм ослаблен, вредное UV-А-излучение запускает процесс окисления, нанося непоправимый вред как коже, так и организму в целом. От этого страдают иммунная система и ДНК.

Факторы нарушения баланса окислительных процессов:

  • Ионизирующее излучение.
  • Химические препараты.
  • Бактерии, вирусы.
  • Алкоголь, курение.
  • Загрязнение окружающей среды.
  • Неправильное питание.

Одно из решений – восстановление или своевременное поддержание баланса между окислительными и антиокислительными процессами в организме. Это возможно при регуляции процессов окисления в организме с помощью рациона питания и качественного улучшения образа жизни.

Особенно об этом необходимо помнить жителям крупных городов, где выхлопные газы и неправильное питание разрушают антиоксидантную систему в организме. Внутри человека постепенно накапливаются вредные вещества, которые приводят к оксидативному стрессу и вызывают различные патологии.

Антиоксиданты – полноценная защита организма

На сегодня известно более 3000 разнообразных антиоксидантов. Обычно их подразделяют на 4 группы:

  1. Биофлавоноиды растений. Действуют как ловушка: захватывают свободные радикалы и токсины и выводят их из организма. С их помощью можно снизить риск возникновения сердечно-сосудистых и онкологических заболеваний. Источник: катехин, который содержится в зеленом чае, красном вине, цитрусовых.
  2. Витамины. Поглощают излишнюю энергию агрессивных свободных радикалов, а также прекращают или затормаживают развитие цепной реакции. Бывают двух видов: жирорастворимые (защита жировой ткани) и водорастворимые (защита мышц и сосудов). Например, витамины А, Е, С, бета-каротин.
  3. Минеральные вещества, которые человек не способен вырабатывать сам. Поддерживают нормальный уровень витаминов в организме и защищают от инфекций. Пример: селен, марганец, кальций, цинк.
  4. Ферменты. Выступают в роли катализаторов, обеззараживая и ускоряя процесс вывода свободных радикалов. Пример: фермент коэнзим Q10.

В зависимости от происхождения можно выделить два вида антиоксидантов:

  1. Природные (содержатся в продуктах питания и лучше всего усваиваются организмом).
  2. Синтетические (препараты, производящиеся фармацевтической промышленностью).

Самый богатый источник антиоксидантов – растительная пища. Кстати, кожура, семечки и корневища наиболее богаты этими ценными элементами. Некоторые ученые предполагают, что самые эффективные антиоксиданты – это биофлавоноиды, которые находятся в кожуре ярко окрашенных растений, например в винограде, свекле, чернике, баклажанах, капусте фиолетового цвета.

Основными источниками сильнейших антиоксидантов являются:

  • апельсины, абрикосы, папайя, арбузы, мандарины, нектарины, киви, манго, орехи;
  • морковь, горчица, семена подсолнечника, тыква, шпинат;
  • брокколи, свекла, кукуруза, томаты, спаржа, шпинат;
  • тунец, птица, говядина, устрицы, зерновой хлеб, молочные продукты;
  • красное мясо, устрицы, фасоль, красная рыба.

Баланс антиоксидантных и окислительных процессов является незаменимой профилактикой многих опасных заболеваний. Продлите свою молодость и отличное настроение с помощью регулярного приема антиоксидантов!


Многие разрушительные процессы в нашей жизни связаны с окислением, то есть происходят при участии кислорода. Однако окислительные реакции просто необходимы для нормальной жизнедеятельности организма. Они влияют на образование энергии, восстановление, процессы гомеостаза и другие жизненно важные функции. Главное здесь - сохранить баланс и не допустить перехода границы, когда окисление превращается в нашего врага.

Процессы, происходящие в организме человека, неизменно связаны с реакцией окисления. При этом сложные вещества распадаются (окисляются) до более простых и выделяется энергия, необходимая для жизни.

Однако результаты подобных окислительных процессов могут иметь два итога: положительный и отрицательный.

Результаты окислительных реакций

Баланс окислительных и антиокислительных процессов - залог долголетия

Необходимое условие нормального функционирования всех систем организма и здоровья человека - баланс между окислительными и антиокислительными процессами. Смещение этого явления в ту или другую сторону может являться как патологией, так и приспособительной реакцией.

Если окислительных процессов становится больше, то нашему организму приходится нелегко. Большое количество свободных радикалов (которые образуются в процессе окисления) вызывает оксидативный стресс, при котором поражаются здоровые клетки организма.

Это может привести к развитию злокачественных опухолей, преждевременному старению и серьезным заболеваниям. Различные вирусы активнее проникают в организм, так как он не защищен, а мы становимся более уязвимы для инфекционных заболеваний.

Когда организм ослаблен, вредное UV-А-излучение запускает процесс окисления, нанося непоправимый вред как коже, так и организму в целом. От этого страдают иммунная система и ДНК.

Факторы нарушения баланса окислительных процессов:

  • Ионизирующее излучение.
  • Химические препараты.
  • Бактерии, вирусы.
  • Алкоголь, курение.
  • Загрязнение окружающей среды.
  • Неправильное питание.

Одно из решений - восстановление или своевременное поддержание баланса между окислительными и антиокислительными процессами. Это возможно при регуляции процессов окисления с помощью рациона питания и качественного улучшения образа жизни.

Особенно об этом необходимо помнить жителям крупных городов, где выхлопные газы и неправильное питание разрушают антиоксидантную систему в организме. Внутри человека постепенно накапливаются вредные вещества, которые приводят к оксидативному стрессу и вызывают различные патологии.

Антиоксиданты - полноценная защита организма

На сегодня известно более 3000 разнообразных антиоксидантов. Обычно их подразделяют на 4 группы:

  1. Биофлавоноиды растений. Действуют как ловушка: захватывают свободные радикалы и токсины и выводят их из организма. С их помощью можно снизить риск возникновения сердечно-сосудистых и онкологических заболеваний. Источник: катехин, который содержится в зеленом чае, красном вине, цитрусовых.
  2. Витамины. Поглощают излишнюю энергию агрессивных свободных радикалов, а также прекращают или затормаживают развитие цепной реакции. Бывают двух видов: жирорастворимые (защита жировой ткани) и водорастворимые (защита мышц и сосудов). Например, витамины А, Е, С, бета-каротин.
  3. Минеральные вещества, которые человек не способен вырабатывать сам. Поддерживают нормальный уровень витаминов в организме и защищают от инфекций. Пример: селен, марганец, кальций, цинк.
  4. Ферменты. Выступают в роли катализаторов, обеззараживая и ускоряя процесс вывода свободных радикалов. Пример: фермент коэнзим Q10.

В зависимости от происхождения можно выделить два вида антиоксидантов:

  1. Природные (содержатся в продуктах питания и лучше всего усваиваются организмом).
  2. Синтетические (препараты, производящиеся фармацевтической промышленностью).

Самый богатый источник антиоксидантов - растительная пища. Кстати, кожура, семечки и корневища наиболее богаты этими ценными элементами. Некоторые ученые предполагают, что самые эффективные антиоксиданты - это биофлавоноиды, которые находятся в кожуре ярко окрашенных растений, например в винограде, свекле, чернике, баклажанах, капусте фиолетового цвета.

Основными источниками сильнейших антиоксидантов являются:

  • апельсины, абрикосы, папайя, арбузы, мандарины, нектарины, киви, манго, орехи;
  • морковь, горчица, семена подсолнечника, тыква, шпинат;
  • брокколи, свекла, кукуруза, томаты, спаржа, шпинат;
  • тунец, птица, говядина, устрицы, зерновой хлеб, молочные продукты;
  • красное мясо, устрицы, фасоль, красная рыба.


Баланс антиоксидантных и окислительных процессов является незаменимой профилактикой многих опасных заболеваний. Продлите свою молодость и отличное настроение с помощью регулярного приема антиоксидантов!

Рубрики:
Метки:

© З. Н. Хисматуллина - канд. социол. наук, доц. каф. социальной работы, педагогики и психологии КНИТУ, [email protected].

Окислительно-восстановительные реакции. Роль окислительно-восстановительных процессов в организме. Окислительно-восстановительный потенциал. Уравнение Нернста.

С окислительно-восстановительными реакциями связаны дыха­ние и обмен веществ, гниение и брожение, фотосинтез и нервная деятельность живых организмов. Окислительно-восстановительные процессы лежат в основе горения топлива, коррозии металлов, электролиза, металлургии и т.д. Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих молекул, называются окислително- восстановительными. Процессы окисления и восстановления протекают одновременно: если один элемент, участвующий в реак­ции, окисляется, то другой должен восстанавливаться. Окислитель - это вещество, содержащее элемент, который принимает электроны и понижает степень окисления. Окислитель в результате реакции восстанавливается. Так, в реакции 2Fe +3 Cl - 3 + 2K + I - -> I 2 0 + 2Fe +2 Cl 2 - + 2K + Cl - . Восстановитель - вещество, содержащее элемент, который отдает электроны и повышает степень окисления. Восстановитель в результате реакции окисляется. Восстановителем в предлагаемой реакции является ион I - . Источником электрической энергии в элементе служит химическая реакция вытеснения меди цинком: Zn + Cu 2+ + Cu. Работа окисления цинка, равная убыли изобарно-изотермического потенциала, может быть представлена как произведение переносимого электричества на величину э. д. с.: A=--дG 0 =п EF, где п- заряд катиона; Е - з. д. с. элемента и F- число Фарадея. С другой стороны, по уравнению изотермы реакции. Окислительно-восстановительные потенциалы имеют большое значение в физиологии человека и животных. К числу редок-сисистем относятся такие системы в крови и тканях, как гем/гематии и цитохромы, в которых содержится двух- и трехвалентное железо; аскорбиновая кислота (витамин С), находящаяся в окисленной и восстановленной формах; система глутатиона, цистин-цистеина янтарной и фумаровой кислот и др.Важнейший процесс биологического окисления, а именно пере­нос электронов и протонов с окисляемого субстрата на кислород осуществляемый в тканях при помощи строго определенного рядя промежуточных ферментов-переносчиков, также представляет собой цепь окислительно-восстановительных процессов. Каждое звене этой цепи соответствует той или иной редокс-системе, характерезующейся определенным редокс-потенциалом.

Определение направления окислительно-восстановительных реакций по стандартным значениям свободной энергии образования реагентов и по величинам окислительно-восстановительных потенциалов.

Различные процессы жизнедеятельности сопровождаются воз­никновением в организме электрохимических процессов, играющих существенную роль в обмене веществ. Электрохимические превращения в организме можно разделить на две основные группы: процессы, связанные с переносом электронов и возникновением окислительно-восстановительных потенциалов; процессы, связанные с переносом ионов (без изменения их зарядов) и с образованием биоэлектрических потенциалов. В результате этих процессов возникают разности потенциалов между разными прослойками тканей, находящихся в различных физиологических состояниях. Они связаны с различной интенсив­ностью окислительно-восстановительных биохимических процессов. К ним относятся, например, потенциалы фотосинтеза, возникающие между освещенными н неосвещенными участками листа, причем освещенный участок оказывается положительно заряженным по от­ношению к неосвещенному. Окислительно-восстановительные процессы первой группы в ор­ганизме можно разделить на три типа: 1.Непосредственный перенос электронов между веществами без участия атомов кислорода и водорода, например, перенос элек­трона в цитохромах: цитохром (Fе 3+) + е -> цитохром (Ре 2+) и перенос электрона в ферменте цитохромоксидазе: цитохромоксидаза (Си 2+) + е -> цитохромоксидаза (Си 1+). 2. Окислительный, связанный с участием атомов кислорода и ферментов оксидаз, например, окисление альдегидной группы субстрата в кислотную: RСОН + O ó RСООН. 3.рН-Зависимый, происходящий в присутствии ферментов дегидрогеназ (Е) и коферментов (Ко), которые образуют активиро­ванный комплекс фермент-кофермент-субстрат (Е-Ко-5), присоеди­няет электроны и катионы водорода от субстрата и вызывает его окисление.Такими коферментами являются никотинамид-аденин-нуклеотид (НАД +), который присоединяет два электрона и один протон: S-2Н - 2е + НАД* ó S + НАДН + Н + , флавин-аденин-динуклеотид (ФАД), который присоединяет два элек­трона и два протона: S - 2Н - 2е + ФАД óS + ФАДН 2 , и убихинон или кофермент Q (КоО), который также присоединяет два электрона и два протона: S-2Н - 2е + КоQ ó S + КоQН 2 .

66. Оксидометрия, иодометрия, перманганатометрия. Применение в медицине.

В зависимости от применяемых титрантов различают несколько видов окислительно-восстановительного титрования: перманганатометрическое, иодиметрическое, бихроматометрическое и другие. Перманганатометрическое титрование основано на взаимодействии стандартного раствора перманганата калия с раствором восстановителя. Окисление перманганатом калия можно проводить в кислой, щелоч­ной и нейтральная среде, причем продукты восстановления КМпО.в разных средах различны. Перманганатометрическое титрование рекомендуется проводить в ки­слой среде. Во-первых, в результате реакции образуются бесцветные ионы Мп 2+ и одна избыточная капля титранта КМпО 4 окрасит титруемый раствор в ро­зовый цвет. При окислении в нейтральной или щелочной среде выпадает темно-бурый осадок, или образуются ионы МпО 2- 4 темно-зеленого цвета, затрудняющие фиксирование точки эквивалентности. Во-вторых, окислительная способность перманганата калия в кислой среде на много больше (Е° MnO 4 / Мп 2+ = + 1,507в), чем в щелочной и ней­тральной среде. Стандартный окислительный потенциал пары Е } /2Г - составляет 0,54 В. Поэтому вещества, окислительный потенциал которых ниже этой величины, будут являться восстановителями. И, следовательно, будут направлять реак­цию слева направо, "поглощая" иод. К таким веществам относятся, например, На 2 8зОз, хлорид олова (II) и др. Вещества, окислительный потенциал кото­рых выше 0,54 В, будут окислителями по отношению к иону будут направ­лять реакцию в сторону выделения свободного иода: 2I+2ё=I 2 . Количество выделяющегося свободного йода определяют титрованием его растворов тиосульфата Na 2 S 2 O 3: I+2ё-> 2I - Тиосульфит натрия поглощает свободный йод, сдвигая равновесие ре­акции вправо. Для протекания реакции слева направо нужен избыток свобод­ного йода. Обычно проводят обратное титрование. К восстановителю, кото­рый определяют, прибавляют сразу избыток титрованного раствора йода. Часть его вступает в реакцию с восстановителем, а остаток определяют тит­рованием раствором тиосульфата натрия.



67. Квантово – механическая модель атома.

Квантовая (или волновая) механика основывается на том, что любые материальные частицы одновременно обладают и волновыми свойствами. Впервые это было предсказано Л. де Бройлем, кото­рый в 1924 г. теоретически показал, что частица с массой т и ско­ростью v может быть ассоциирована с волновым движением, длина волны которого X определяется выражением: Л = h / m v, где h (постоянная Планка) = 6.6256-10- 27 эрг-с = 6.6256-10 34 Дж-с. Вскоре это предположение было подтверждено явлениями дифрак­ции электронов и интерференции двух пучков электронов. Двойственная природа элементарных частиц (корпускулярно-волновой дуализм) - частное проявление общего свойства материи, однако ожидать его следует только для микрообъектов. Волновые свойства микрочастиц выражаются в ограниченной применимости к ним таких понятий, которыми характеризуется мак­рочастица в классической механике, как координата (х, у, г) и им­пульс (р = т v).Для микрочастиц всегда имеются неопреде­ленности в координате и импульсе, связанные соотношением Гейзенберга: д х д p x > = h, где д х - неопределенность координаты, а д р х - неопределенность импульса. Согласно принципу неопределенности, движение микрочастицы невозможно описать определенной траекторией и нельзя представить движение электрона в атоме в виде движения по конкретной круговой или эллиптической орбите, как это было принято в модели Бора. Описание движения электрона может быть дано при помощи \ волн де Бройля. Волна, отвечающая микрочастице, описывается волновой функцией у (х, у, г). Физический смысл имеет не сама; волновая функция, а только произведение квадрата ее модуля на элементарный объем |у| 2 -dу, равное вероятности нахождения элек­трона в элементарном объеме dv = dx -dу- dz. Волновое уравнение Шредингера - это математическая модель атома. Она отражает единство корпускулярных и волновых свойств электрона. Не вдаваясь в анализ уравнения Шредингера.

68. Электронное облако орбиталь.

Представление об электроне как о ма­териальной точке не соответствует его истинной физической при­роде. Поэтому правильнее рассматривать как схематическое изображение электрона, «размазанного» по всему объему атома в виде так называемого электронного облака: чем плотнее распо­ложены точки в том или ином месте, тем больше здесь плотность электронного облака. Иначе говоря, плотность электронного облака пропорциональна квадрату волновой функции. Э нергия электрона в атоме зависит от главного квантового числа п. В атоме водорода энергия электрона полностью определяется значением п. Однако в многоэлек­тронных атомах энергия электро­на зависит и от значения орбитального квантового числа. Поэтому состояния электрона, характери­зующиеся различными значения­ми, принято называть энергетическими подуровнями электрона в атоме. В соответствии с этими обозначениями говорят об s - подуровне, р-подуровие и т. д. Электроны, характеризующиеся значениями побочного квантового числа О, 1, 2 и 3, называют, соответственно, s-электроиами, p -электронами, d - электронами и f - электронами. При данном значении главного квантового числа п наименьшей энергией обладают s -электроны, затем р-, d- и f-электроны. Состояние электрона в атоме, отвечающее определенным зна­чениям п и l, записывается следующим образом: сначала цифрой указывается значение главного квантового числа, а затем буквой -- орбитального квантового числа. Так, обозначение 2р отно­сится к электрону, у которого п = 2 и l = 1, обозначение 3d - к электрону, у которого п = 3 и l == 2. Электронное облако не имеет резко очерченных в пространстве границ. Поэтому понятие о его размерах и форме требует уточне­ния.

69. Характеристика электрического состояния электрона системой квантовых чисел: главное, орбитальное, магнитное и спиновое квантовые числа.

В одномерной модели атома энергия электрона может принимать только определенные значения, иначе говоря - она квантована. Энергия электрона в реаль­ном атоме также величина квантованная. Возможные энергетиче­ские состояния электрона в атоме определяются величиной главного квантового числа п, которое может принимать положительные целочисленные значения: 1, 2, 3... и т. д. Наи­меньшей энергией электрон обладает при п = 1; с увеличением п. энергия электрона возрастает. Поэтому состояние электрона, ха­рактеризующееся определенные значением главного квантового числа, принято называть энергетическим уровнем электрона в атоме: при n = 1 электрон находится на первом энергетическом уровне, при n = 2 на втором и т. д. Главное квантовое число определяет и размеры электронного облака. Для того чтобы увеличить размеры электронного облака, нужно часть его удалить на большее расстояние от ядра. Произвольной не может быть и форма электронного об­лака. Она определяется орбиталь­ным квантовым числом (его называют также побочным или ази­мутальным), которое может прини­мать целочисленные значения от 0 до (п - 1), где п - главное квантовое чис­ло. Различным значениям п отвечает раз­ное число возможных значений. Так, при я = 1 возможно только одно значе­ние; орбитального квантового числа - нуль (/ = 0), при п= 2 l может быть равным 0 или 1, при я = 3 возможны значения /, равные О, 1 и 2; вообще, дан­ному значению главного квантового числа п соответствуют п раз­личных возможных значений орбитального квантового числа. Из урав­нения Шредингера следует, что, и ориентация электронного облака в пространстве не может быть произвольной: она определяется зна­чением третьего, так называемого магнитного квантового числа т.п. Магнитное квантовое число может принимать любые целочис­ленные значения, - как положительные, так и отрицательные, в пределах от + L до - L. Таким образом, для разных значений число возможных значений m различно. Так, для s-электронов (l= 0} возможно только одно значение т (m- 0); для p-электронов (L=1) возможны три различных значения т. П омимо квантовых чисел п, I и т, электрон характеризуется еще одной квантованной величиной, не связанной с. движением электрона вокруг ядра, а определяющей его собственное состояние. Эта ве­личина получила название спинового квантового числа или просто спина; спин обычно обозначают буквой S. Спин электрона может иметь только два значения. Таким образом, как и в случае остальных квантовых чисел, возможные значения спинового квантового числа различаются на единицу.


Close