Лекция 3. Плоскопараллельное движение твердого тела. Определение скоростей и ускорений.

В данной лекции рассматриваются следующие вопросы:

1. Плоскопараллельное движение твердого тела.

2. Уравнения плоскопараллельного движения.

3. Разложение движения на поступательное и вращательное.

4. Определение скоростей точек плоской фигуры.

5. Теорема о проекциях скоростей двух точек тела.

6. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

7. Решение задач на определение скорости.

8. План скоростей.

9. Определение ускорений точек плоской фигуры.

10. Решение задач на ускорения.

11. Мгновенный центр ускорений.

Изучение данных вопросов необходимо в дальнейшем для динамики плоского движения твердого тела, динамики относительного движения материальной точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.

Разложение движения на поступательное и вращательное

Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П (рис. 28). Плоское движение совершают многие части механизмов и машин, например катящееся колесо на прямолинейном участке пути, шатун в кривошипно-ползунном механизме и др. Частным случаем плоскопараллельного движения является вращательное движение твердого тела вокруг неподвижной оси.

Рис.28 Рис.29

Рассмотрим сечение S тела какой-нибудь плоскости Оxy , параллельной плоскости П (рис.29). При плоскопараллельном движе­нии все точки тела, лежащие на прямой ММ ’, перпендикулярной течению S , т. е. плоскости П , движутся тождественно.

Отсюда заключаем, что для изучения движения всего тела дос­таточно изучить, как движется в плоскости Оху сечение S этого тела или некоторая плоская фигура S . Поэтому в дальнейшем вместо плоского движения тела будем рассматривать движение плоской фигуры S в ее плоскости, т.е. в плоскости Оху .

Положение фигуры S в плоскости Оху определяется положением какого-нибудь проведенного на этой фигуре отрезка АВ (рис. 28). В свою очередь положение отрезка АВ можно определить, зная координаты x A и y A точки А и угол , который отрезок АВ образует с осью х . Точку А , выбранную для определения положения фигуры S , будем в дальнейшем называть полюсом.

При движении фигуры величины x A и y A и будут изменяться. Чтобы знать закон движения, т. е. положение фигуры в плоскости Оху в любой момент времени, надо знать зависимости

Уравнения, определяющие закон происходящего движения, называются уравнениями движения плоской фигуры в ее плоскости. Они же являются уравнениями плоскопараллельного движения твер­дого тела.

Первые два из уравнений движения определяют то движение, которое фигура совершала бы при =const; это, очевидно, будет поступательное движение, при котором все точки фигуры движутся так же, как полюс А . Третье уравнение определяет движе­ние, которое фигура совершала бы при и , т.е. когда полюс А неподвижен; это будет вращение фи­гуры вокруг полюса А . Отсюда можно заключить, что в общем случае движение плоской фигуры в ее плоскости может рассматриваться как слагающееся из по­ступательного движения, при котором все точки фигуры движутся так же, как полюс А , и из вращательного движения вокруг этого полюса.

Основными кинематическими характеристиками рассматривае­мого движения являются скорость и ускорение поступательного движения, равные скорости и ускорению полюса , а также угловая скорость и угловое ускорение враща­тельного движения вокруг полюса.


Определение скоростей точек плоской фигуры

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюса А , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.30), где - радиус-вектор полюса А , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

Определение скоростей точек плоской фигуры

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюса А , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрическииз скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.3), где - радиус-вектор полюса А , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

В полученном равенстве величина есть скорость полюса А ; величина же равна скорости , которую точка М получает при , т.е. относительно осей , или, иначе говоря, при вращении фигуры вокруг полюса А . Таким образом, из предыдущего равенства действительно следует, что

Скорость , которую точка М получает при вращении фигуры вокруг полюса А :

где ω - угловая скорость фигуры.

Таким образом, скорость любой точки М плоской фигуры геометрически складывается из скорости какой-нибудь другой точки А , принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление скорости находятся построением соответствующего параллело­грамма (рис.4).

Рис.3Рис.4

Теорема о проекциях скоростей двух точек тела

Определение скоростей точек плоской фигуры (или тела, дви­жущегося плоскопараллельно) связано обычно с довольно сложными расчетами. Однако можно получить ряд других, практически более удобных и простых мето­дов определения скоростей точек фигуры (или тела).

Рис.5

Один из таких методов дает тео­рема: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу. Рассмотрим какие-нибудь две точки А и В плоской фигуры (или тела). Принимая точку А за полюс (рис.5), получаем . Отсюда, проектируя обе части равенства на ось, направленную по АВ , и учитывая, что вектор перпендику­лярен АВ , находим


и теорема доказана.

Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на поня­тии о мгновенном центре скоростей.

Мгновенным центром скоростей называется точка плоской фигу­ры, скорость которой в данный момент времени равна нулю.

Легкоубедиться, что если фигура движется непоступательно , то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времени t точки А и В плоской фигуры имеют скорости и , не параллельные друг другу (рис.6). Тогда точка Р , лежащая на пересечении перпендикуляров Аа к вектору и В b к вектору , и будет мгновенным центром скоростей так как . Всамомделе,еслидопустить, что , то по теореме о проекциях скоростей вектор должен быть одновременно перпендикулярен и АР (так как ) и ВР (так как ), что невозможно. Из той же теоремы видно, что никакая другая точ­ка фигуры в этот момент времени не может иметь скорость, равную нулю.

Рис.6

Если теперь в момент времени взять точку Р за полюс, то скорость точки А будет

так как . Аналогичный результат получается для любой другой точки фигуры. Следовательно, скорости точек плоской фигурыопределяются в данный момент времени так, как если бы движение фигуры было вращением вокруг мгновенного центра скоростей. При этом

Из равенств, следует еще, что точек плоской фигуры пропорциональны их расстоя­ниям от МЦС.

Полученные результаты приводят к следующим выводам.

1. Для определения мгновенного центра скоростей надо знать то­лько направления скоростей и каких-нибудь двух точек А и В плоской фигуры (или траектории этих точек); мгновенный центр скоростей находится в точке пересечения перпендикуляров, вос­ставленных из точек А и В к скоростям этих точек (или к каса­тельным к траекториям).

2. Для определения скорости любой точки плоской фигуры, надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой ее точки В . Тогда, вос­ставив из точек А и В перпендикуляры к и , построим мгно­венный центр скоростей Р и по направлению определим направ­ление поворота фигуры. После этого, зная , найдем скорость любой точки М плоской фигуры. Направлен век­тор перпендикулярно РМ в сторону поворота фигуры.

3. Угловая скорость плоской фигуры равна в каждый данный момент времени отношению скорости какой-нибудь точки фигуры к ее расстоянию от мгновенного центра скоростей Р :

Рассмотрим некоторые частные случаи определения мгновенного центра скоростей.

а) Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверх­ности другого неподвижного, то точка Р катящегося тела, касаю­щаяся неподвижной поверхности (рис.7), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю ( ), и, следовательно, является мгновенным центром скоростей. Примером служит качение колеса по рельсу.

б) Если скорости точек А и В плоской фигуры параллельны друг другу, причем линия АВ не перпендикулярна (рис.8,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек параллельны . При этом из теоремы о проекциях скоростей следует, что т. е. ; аналогичный результат получается для всех других точек. Следовательно, в рас­сматриваемом случае скорости всех точек фигуры в данный момент времени равны друг другу и по модулю, и по направлению, т.е. фигура имеет мгновенное поступательное распределение скоростей (такое состояние движения тела называют еще мгновенно поступа­тельным). Угловая скорость тела в этот момент времени, как видно равна нулю.

Рис.7

Рис.8

в) Если скорости точек А и В плоской фигуры параллельны друг другу и при этом линия АВ перпендикулярна , то мгновен­ный центр скоростей Р определяется построением, показанным на рис.8,б. Справедливость построений следует из пропорции. В этом случае, в отличие от предыдущих, для нахождения центра Р надо кроме направлений знать еще и модули скоростей .

г) Если известны вектор скорости какой-нибудь точки В фигуры и ее угловая скорость , то положение мгновенного центра скоростей Р , лежащего на перпендикуляре к (рис.8,б), можно найти как .

Решение задач на определение скорости.

Для определения искомых кинематических характеристик (угловой скорости тела или скоростей его точек) надо знать модуль и направление скорости какой-нибудь одной точки и направление скорости другой точки сечения этого тела. С определения этих характеристик по данным задачии следует начинать решение.

Механизм, движение которого исследуется, надо изображать на чертеже в том положении, для которого требуется определить соответствующие характеристики. При расчете следует помнить, что понятие о мгновенном центре скоростей имеет место для данного твердого тела. В механизме, состоящем из нескольких тел, каждое непоступательное движущееся тело имеет в данный момент времени свой мгновенный центр скоростей Р и свою угловую скорость.

Пример 1. Тело,имеющееформука­тушки, катится своим средним цилиндром по неподвиж­ной плоскости так, что (см). Радиусы цилин­дров: R = 4 сми r = 2 см (рис.9)..

Рис.9

Решение. ОпределимскороститочекА,В иС .

Мгновенныйцентр скоростей нахо­дится в точке касания катушки с плоско­стью.

Скоростьполюса С.

Угловая скорость катушки

Скорости точекА иВ направленыперпендикулярноотрезкам прямых, соединяющих эти точки с мгновенным центром скоростей. Величина скоростей:

Пример 2. Колесо радиуса R = 0,6 м катится без скольжения по прямолинейному участку пути (рис.9.1); скорость его центра С постоянна и равна v c = 12 м/с. Найти угловую скорость колеса и скорости концов М 1 , М 2 , M 3 , М 4 вертикального и горизонтального диаметров колеса.

Рис.9.1

Решение. Колесо совершает плоскопараллельное движение. Мгно­венный центр скоростей колеса находится в точке М1 контакта с горизонтальной плоскостью, т. е.

Угловая скорость колеса

Находим скорости точек М2 , M3 и М4

Пример 3 . Ведущее колесо автомобиля радиуса R = 0,5 м катится со скольжением (с буксованием) по прямолинейному участку шоссе; скорость его центра С постоянна и равна v c = 4 м/с. Мгновенный центр скоростей колеса находится в точке Р на расстоянии h = 0,3 м от плоскости качения. Найти угловую скорость колеса и скорости точек А и В его вертикального диаметра.

Рис.9.2

Решение. Угловая скорость колеса

Находим скорости точек А и В

Пример 4. Найти угловую скорость шатуна АВ и скорости точек В и С кривошипно-шатунного механизма (рис.9.3,а ). Дана угловая скорость кривошипа OA и размеры: ω ОА = 2 с -1 , OA = АВ = 0,36 м, АС = 0,18 м.

а) б)

Рис.9.3

Решение. Кривошип OA совершает вращательное движение, шатун АВ - плоскопараллельное движение (рис.9.3,б ).

Находим скорость точки А звена OA

Скорость точки В направлена по горизонтали. Зная направление скоростей точек А и В шатуна АВ, определяем положение его мгновенного центра скоростей - точку Р АВ.

Угловая скорость звена АВ и скорости точек В и С:

Пример 5. Стержень АВ скользит концами по взаимно перпендикулярным прямым так, что при угле скорость (рис.10). Длина стержня AB = l . Определим скорость конца А и угловую скорость стержня.

Рис.10

Решение. Нетрудно определить направление век­тораскороститочкиА , скользящей по вер­тикальнойпрямой. Тогда находится на пересечении перпендикуляровк и (рис. 10).

Угловая скорость

Скорость точки А :

А ско­рость центра стержня С , например,направленаперпендикулярно иравна:



План скоростей.

Пусть известны скорости нескольких точек плоского сечения тела (рис.11). Если эти скорости отложить в масштабе из некоторой точки О и соединитьихконцыпрямыми,то получитсякартинка,котораяназывается планом скоростей. (На рисунке ) .

Рис.11

Свойстваплана скоростей.

а)Стороны треугольников на плане скоростей перпендику­лярнысоответствующим прямым на плоскости тела.

Действительно, . Но на плане скоростей . Значит причём перпендикулярнаАВ , по­этому и .Точно так же и .

б) Стороныплана скоростейпропорциональны соответствующим от­резкам прямых на плоскости тела.

Таккак , то отсюдаи следует, что стороныплана скоростей пропорциональны отрезкам прямых на плоскости тела.

Объединивобасвойства,можносделать вывод,что план скоростей подобенсоответствующейфигуренателе и повёрнут относительно её на 90˚ понаправлениювращения.Этисвойстваплана скоростей позволяют определять скорости точек тела графическим способом.

Пример 6. Нарис.12 вмасштабеизображёнмеханизм. Известна угловая скорость звена ОА .

Рис.12

Решение. Чтобы построить план ско­ростейдолжнабытьизвестна скоростькакой-нибудьодной точкиихотябынаправление вектораскорости другой. В на­шем примере можно определить скорость точки А : и направлениееёвектора .

Рис.13

Откладываем (рис.13) из точки о в масштабе Известно направлениевектораскоростиползунаВ – горизонтальное. Проводим на плане скоростей из точки О прямую I понаправлению скорости , на которойдолжнанаходитьсяточка b , определяющая скорость этой точки В . Таккакстороныпланаскоростей перпендикулярны соответствующим звеньяммеханизма,тоизточкиа проводимпрямуюперпендикулярно АВ допересеченияс прямой I . Точка пересечения определит точку b , а значит и скорость точки В : . По второму свойству плана скоростей его стороны подобны звеньяммеханизма. Точка С делит АВ пополам, значит и с должна делить а b пополам. Точка с определит на плане скоростей величину и направление скорости (если с соединить с точкой О ).

СкоростьточкиЕ равнанулю, поэтомуточка е на плане скоростейсовпадает с точкой О .

Далее.Должнобыть и . Проводим эти прямые, находимихточкупересечения d .Отрезоко d определитвекторскорости .

Пример 7. В шарнирном четырехзвеннике ОАВС ведущий кривошип OA см равномерно вращается вокруг оси О с угловой скоростью ω = 4 с -1 и при помощи шатуна АВ = 20 см приводит во вращательное движение кривошип ВС вокруг оси С (рис.13.1,а ). Определить скорости точек А и В, а также угловые скорости шатуна АВ и кривошипа ВС.

а) б)

Рис.13.1

Решение. Скорость точки А кривошипа OA

Взяв точку А за полюс, составим векторное уравнение

где

Графическое решение этого уравнения дано на рис.13.1 (план скоростей).

С помощью плана скоростей получаем

Угловая скорость шатуна АВ

Скорость точки В можно найти с помощью теоремы о проекциях скоростей двух точек тела на соединяющую их прямую

В и угловая скорость кривошипа СВ

Определение ускорений точек плоской фигуры

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям О xy (см.рис.30) определяется радиусом-вектором - угол между вектором и отрезком МА (рис.14).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорениякакой-нибудь другой точки А , принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).

Однако вычисление и ускорения какой-нибудь точки А этой фигуры в данный момент; 2) траектория какой-нибудь другой точки В фи­гуры. В ряде случаев вместо траектории второй точки фигуры до­статочно знать положение мгновенного центра скоростей.

Тело (или механизм) при решении задач надо изображать в том положении, для которого требуется определить ускорение соответ­ствующей точки. Расчет начинается с определения по данным задачи скорости и ускорения точки, принимаемой за полюс.

План решения (если заданы скорость и ускорение одной точки плоской фигуры и направления скорости и ускорения другой точки фигуры):

1) Находим мгновенный центр скоростей, восставляя перпендикуляры к скоростям двух точек плоской фигуры.

2) Определяем мгновенную угловую скорость фигуры.

3) Определяем центростремительное ускорение точки вокруг полюса, приравнивая нулю сумму проекций всех слагаемых ускорений на ось, перпендикулярную к известному направлению ускорения.

4) Находим модуль вращательного ускорения, приравнивая нулю сумму проекций всех слагаемых ускорений на ось, перпендикулярную к известному направлению ускорения.

5) Определяем мгновенное угловое ускорение плоской фигуры по найденному вращательному ускорению.

6) Находим ускорение точки плоской фигуры при помощи формулы распределения ускорений.

При решении задач можно применять «теорему о проекциях векторов ускорений двух точек абсолютно твердого тела»:

«Проекции векторов ускорений двух точек абсолютно твердого тела, которое совершает плоскопараллельное движение, на прямую, повернутую относительно прямой, проходящей через эти две точки, в плоскости движения этого тела на угол в сторону углового ускорения, равны».

Эту теорему удобно применять, если известны ускорения только двух точек абсолютно твердого тела как по модулю, так и по направлению, известны только направления векторов ускорений других точек этого тела (геометрические размеры тела не известны), не известны и – соответственно проекции векторов угловой скорости и углового ускоренияэтого тела на ось, перпендикулярную плоскости движения, не известны скорости точек этого тела.

Известны еще 3 способа определения ускорений точек плоской фигуры:

1) Способ основан на дифференцировании дважды по времени законов плоскопараллельного движения абсолютно твердого тела.

2) Способ основан на использовании мгновенного центра ускорений абсолютно твердого тела (о мгновенном центре ускорений абсолютно твердого тела будет рассказано ниже).

3) Способ основан на использовании плана ускорений абсолютно твердого тела.

Мгновенный центр скоростей.

Мгнове́нный центр скоросте́й - при плоскопараллельном движении точка, обладающая следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело.

Для того, чтобы определить положение мгновенного центра скоростей, необходимо знать направления скоростей любых двух различных точек тела, скорости которых не параллельны. Тогда для определения положения мгновенного центра скоростей необходимо провести перпендикуляры к прямым, параллельным линейным скоростям выбранных точек тела. В точке пересечения этих перпендикуляров и будет находиться мгновенный центр скоростей.

В том случае, если векторы линейных скоростей двух различных точек тела параллельны друг другу, и отрезок, соединяющий эти точки, не перпендикулярен векторам этих скоростей, то перпендикуляры к этим векторам также параллельны. В этом случае говорят, что мгновенный центр скоростей находится в бесконечности, и тело движетсямгновенно поступательно.

Если известны скорости двух точек, и эти скорости параллельны друг другу, и кроме того, указанные точки лежат на прямой, перпендикулярной скоростям, то положение мгновенного центра скоростей определяется так, как показано на рис. 2.

Положение мгновенного центра скоростей в общем случае не совпадает с положением мгновенного центра ускорений. Однако в некоторых случаях, например, при чисто вращательном движении, положения этих двух точек могут совпадать.

21.Определение ускорений точек тела.Метод полюса.Понятие о мгновенном центре ускорений .

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

В правой части этого равенства первое слагаемое есть ускорение полюса А , а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A . следовательно,

Значение , как ускорения точки вращающегося твердого тела, определяется как

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки А , принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).

Однако вычисление с помощью параллелограмма, изображен­ного на рис.23, усложняет расчет, так как предварительно надо бу­дет находить значение угла , а затем - угла между векторами и , Поэтому при решении задач удобнее вектор заменять его касательной и нормальной составляющими и пред­ставить в виде



При этом вектор направлен перпендикулярно АМ в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное; вектор всегда направлен от точки М к полюсу А (рис.42). Численно же

Если полюс А движется не прямолинейно, то его ускорение мо­жно тоже представить как сумму касательной и нормальной составляющих, тогда

Рис.41 Рис.42

Наконец, когда точка М движется криволинейно и ее траекто­рия известна, то можно заменить суммой .

Ускорение произвольной точки твёрдого тела, участвующего в плоском движении, можно найти как геометрическую сумму ускорения полюса и ускорения данной точки во вращательном движении вокруг полюса.

Для доказательства этого положения используем теорему сложения ускорений течки в составном движении. Примем за полюс точку . Подвижную систему координат будем перемещать поступательно вместе с полюсом (рис.1.15 а). Тогда относительным движением будет вращение вокруг полюса. Известно, что кориолисово ускорение в случае переносного поступательного движения равно нулю, поэтому

Т.к. в поступательном движении ускорения всех точек одинаковы и равны ускорению полюса, имеем .

Ускорение точки при движении по окружности удобно представить в виде суммы центростремительной и вращательной составляющих:

.

Следовательно

Направления составляющих ускорения показаны на рис.1.15 а.

Нормальная (центростремительная) составляющая относительного ускорения определяется формулой

Величина его равна Вектор направлен вдоль отрезка АВ к полюсу А (центром вращения вокруг является ).

Рис. 1. 15. Теорема о сложении ускорений (а) ее следствия (б)

Касательная (вращательная) составляющая относительного ускорения определяется формулой

.

Модуль этого ускорения находится через угловое ускорение . Вектор направлен перпендикулярно к АВ в сторону углового ускорения (в сторону угловой скорости, если движение ускоренное и в противоположную сторону вращения, если движение замедленное).

Величина полного относительного ускорения определяется по теореме Пифагора:

.

Вектор относительного ускорения любой точки плоской фигуры отклонён от прямой, соединяющей рассматриваемую точку с полюсом на угол , определяемый формулой



На рис.1.15 б показано, что этот угол одинаков для всех точек тела.

Следствие из теоремы об ускорениях.

Концы векторов ускорений точек прямолинейного отрезка на плоской фигуре лежат на одной прямой и делят её на части, пропорциональные расстояниям между точками.

Доказательство этого утверждения следует из рисунка:

.

Методы определения ускорений точек тела при плоском его движении идентичны соответствующим методам определения скоростей.

Мгновенный центр ускорений

В любой момент времени в плоскости движущейся фигуры существует одна единственная точка, ускорение которой равно нулю. Эта точка называется мгновенным центром ускорений (МЦУ).

Доказательство следует из способа определения положения этой точки. Примем за полюс точку А, предполагая известным её ускорение. Раскладываем движение плоской фигуры на поступательное и вращательное. Пользуясь теоремой сложения ускорений, записываем ускорение искомой точки и приравниваем его нулю.

Отсюда следует, что , т. е. относительное ускорение точки Q равно ускорению полюса А по величине и направлено в противоположную сторону. Это возможно только в том случае, если углы наклона относительного ускорения и ускорения полюса А к прямой, соединяющей точку Q, с полюсом А одинаковы.

, , .

Примеры нахождения МЦУ.

Рассмотрим способы нахождения положения МЦУ.

Пример №1: известны , , (рис.1.16 а).

Определяем угол . Откладываем угол в направлении углового ускорения (т. е. в сторону вращения при ускоренном вращении и против - при замедленном), от направления известного ускорения точки и строим луч. На построенном луче откладываем отрезок длиной AQ.

Рис. 1. 16. Примеры нахождения МЦУ: пример №1 (а), пример№2 (б)

Пример № 2. Известны ускорения двух точек А и В: и (рис.1.16 б).

Одну из точек с известным ускорением принимаем за полюс и определяем относительное ускорение другой точки путём геометрических построений. Измерением находим угол и под этим углом проводим лучи от известных ускорений. Точка пересечения этих лучей является МЦУ. Угол откладывается от векторов ускорений в ту же сторону, в какую идёт угол от вектора относительного ускорения к прямой ВА.

Следует отметить, что МЦУ и МЦС разные точки тела, причём ускорение МЦС не равно нулю и скорость МЦУ не равна нулю (рис 1.17).

Рис. 1. 17. Положение МЦС и МЦУ в случае качения катка без скольжения

В тех случаях, когда ускорения точек параллельны друг другу возможны следующие частныйслучаи нахождения МЦУ (рис.1.17)

Рис. 1. 18. Частные случаи нахождения МЦУ:
а) ускорения двух точек параллельны и равны; б) ускорения двух точек антипараллельны; в) ускорения двух точек параллельны, но не равны


СТАТИКА

ВВЕДЕНИЕ В СТАТИКУ

Основные понятия статики, область их применения

Статика - раздел механики, изучающий условия равновесия материальных тел и включающий в себя учение о силах.

Говоря о равновесии, надо помнить, что “всякий покой, всякое равновесие относительны, они имеют смысл только по отношению к той или иной определенной форме движения”. Например, тела, покоящиеся на Земле, движутся вместе с ней вокруг Солнца. Более точно и правильно следует говорить об относительном равновесии. Условия равновесия различны для твердых, жидких и газообразных, деформируемых тел.

Большинство инженерных сооружений можно считать малодеформируемыми или жесткими. Абстрагированием можно ввести понятие абсолютно твердого тела: расстояния, между точками которого не изменяются с течением времени.

В статике абсолютно твердого тела решатся две задачи:

· сложение сил и приведение системы сил к простейшему виду;

· определение условий равновесия.

Силы имеют различную физическую природу, часто неясную до конца и в настоящее время. Вслед за Ньютоном, будем понимать силу как количественную модель, меру взаимодействия материальных тел.

Модель силы по Ньютону определяется тремя главными характеристиками: величиной, направлением действия и точкой ее приложения. Опытным путем установлено, что введенная таким путем величина имеет векторные свойства. Более подробно они рассматриваются в аксиомах статики. В международной системе единиц СИ, используемой в соответствии с ГОСТом, единицей измерения силы является ньютон (Н). Изображение и обозначение сил показано на рис.2.1 а

Совокупность сил, действующих на какое-либо тело (или систему тел) называется системой сил.

Тело, не скрепленное с другими телами, которому можно сообщить движение в любом направлении, называется свободным.

Система сил, полностью заменяющая другую систему сил, действующую на свободное тело, не изменяя при этом состояния движения или покоя, называется эквивалентной.

Рис. 2. 1. Основные понятия о силах

Система сил, под действием которой тело может находиться в состоянии покоя, называется эквивалентной нулю или уравновешенной.

Одна сила, эквивалентная системе сил, называется ее равнодействующей. Равнодействующая существует не всегда, например, в случае изображенном на рисунке ее не существует.

Одна сила, равная по величине равнодействующей, но противоположно ей направленная, называется уравновешивающей для исходной системы сил (рис.2.1 б).

Силы, действующие между частицами одного тела, называются внутренними, а действующие со стороны других тел - внешними.

Аксиомы статики

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

В правой части этого равенства первое слагаемое есть ускорение полюса А , а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A . следовательно,

Значение , как ускорения точки вращающегося твердого тела, определяется как

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки А , принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).

Однако вычисление с помощью параллелограмма, изображен­ного на рис.23, усложняет расчет, так как предварительно надо бу­дет находить значение угла , а затем - угла между векторами и , Поэтому при решении задач удобнее вектор заменять его касательной и нормальной составляющими и пред­ставить в виде

При этом вектор направлен перпендикулярно АМ в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное; вектор всегда направлен от точки М к полюсу А (рис.42). Численно же

Если полюс А движется не прямолинейно, то его ускорение мо­жно тоже представить как сумму касательной и нормальной составляющих, тогда

Рис.41 Рис.42

Наконец, когда точка М движется криволинейно и ее траекто­рия известна, то можно заменить суммой .

Вопросы для самопроверки

Какое движение твердого тела называется плоским? Приведите примеры звеньев механизмов, совершающих плоское движение.

Из каких простых движений складывается плоское движение твердого тела?



Как определяется скорость произвольной точки тела при плоском движении?

Какое движение твердого тела называется плоскопараллельным?

Сложное движение точки

В данной лекции рассматриваются следующие вопросы:

1. Сложное движение точки.

2. Относительное, переносное и абсолютное движения.

3. Теорема сложения скоростей.

4. Теорема сложения ускорений. Ускорение Кориолиса.

5. Сложное движение твердого тела.

6. Цилиндрические зубчатые передачи.

7. Сложение поступательного и вращательного движений.

8. Винтовое движение.

Изучение данных вопросов необходимо в дальнейшем для динамики плоского движения твердого тела, динамики относительного движения материальной точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».


Close