С этим понятием мы сталкиваемся практически постоянно, так как оно оказывает чрезвычайно большое влияние на все материальные предметы нашего мира, в том числе и на человека. В свою очередь, такая как момент инерции, неразрывно связана с упомянутым выше законом, определяя силу и продолжительность его воздействия на твердые тела.

С точки зрения механики любой материальный объект можно описать как неизменную и четко структурированную (идеализированную) систему точек, взаимные расстояния между которыми не изменяются в зависимости от характера их движения. Такой подход позволяет точно вычислять по специальным формулам момент инерции практически всех твердых тел. Еще одним интересным нюансом здесь является то, что любое сложное, имеющее самую замысловатую можно представить в виде совокупности простых перемещений в пространстве: вращательного и поступательного. Это тоже значительно облегчает жизнь физикам при вычислении данной физической величины.

Понять, что же такое момент инерции и каково его влияние на окружающий нас мир, легче всего на примере резкого изменения скорости пассажирского транспортного средства (торможения). В этом случае ноги стоящего пассажира трение о пол увлечет за собой. Но при этом на туловище и голову никакого воздействия оказано не будет, вследствие чего они какое-то время будут продолжать движение с прежней заданной скоростью. В итоге пассажир наклонится вперед или упадет. Иными словами, момент инерции ног, погашенный о пол, будет значительно меньше, чем остальных точек тела. Противоположная картина будет наблюдаться при резком увеличении скорости автобуса или трамвайного вагона.

Момент инерции можно сформулировать как физическую величину, равную сумме произведений элементарных масс (тех самых отдельных точек твердого тела) на квадрат их удаленности от оси вращения. Из данного определения следует, что эта характеристика является величиной аддитивной. Проще говоря, момент инерции материального тела равен сумме аналогичных показателей его частей: J = J 1 + J 2 + J 3 + …

Данный показатель для тел сложной геометрии находится экспериментальным путем. Приходится учитывать слишком много различных физических параметров, включая плотность объекта, которая может быть неоднородной в разных его точках, что создает так называемую разницу масс в различных сегментах тела. Соответственно, и стандартные формулы здесь не подходят. Например, момент инерции кольца с определенным радиусом и однородной плотностью, имеющего ось вращения, которая проходит через его центр, можно рассчитать по следующей формуле: J = mR 2 . Но таким способом не получится вычислить данную величину для обруча, все части которого изготовлены из разных материалов.

А момент инерции шара сплошной и однородной структуры можно рассчитать по формуле: J = 2/5mR 2 . При вычислении данного показателя для тел относительно двух параллельных осей вращения в формулу вводится дополнительный параметр - расстояние между осями, обозначаемое литерой а. Вторая ось вращения обозначается при этом буквой L. Например, формула может иметь следующий вид: J = L + ma 2 .

Тщательные опыты по изучению инерционного движения тел и характера их взаимодействия впервые были произведены Галилео Галилеем на стыке шестнадцатого и семнадцатого веков. Они позволили великому ученому, опередившему свое время, установить основной закон о сохранении физическими телами состояния покоя или относительно Земли при отсутствии воздействия на них других тел. Закон инерции стал первым шагом в установлении основных физических принципов механики, в то время еще совершенно смутных, невнятных и неясных. Впоследствии Ньютон, формулируя общие законы движения тел, включил в их число и закон инерции.

Моментом инерции тела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, разная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси:

Из определения следует, что момент инерции тела (или системы) относительно любой оси является величиной положительной и не равной нулю.

В дальнейшем будет показано, что осевой момент инерции играет при вращательном движении тела такую же роль, какую масса при поступательном, т. е. что осевой момент инерции является мерой инертности тела при вращательном движении.

Согласно формуле (2) момент инерции тела равен сумме моментов инерции всех его частей относительно той же оси. Для одной материальной точки, находящейся на расстоянии h от оси, . Единицей измерения момента инерции в СИ будет 1 кг (в системе МКГСС - ).

Для вычисления осевых моментов инерции можно расстояния точек от осей выражать через координаты этих точек (например, квадрат расстояния от оси Ох будет и т. д.).

Тогда моменты инерции относительно осей будут определяться формулами:

Часто в ходе расчетов пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси называется линейная величина определяемая равенством

где М - масса тела. Из определения следует, что радиус инерцни геометрически равен расстоянию от оси той точки, в которой надо сосредоточить массу всего тела, чтобы момент инерции одной этой точки был равен моменту инерции всего тела.

Зная радиус инерции, можно по формуле (4) найти момент инерции тела и наоборот.

Формулы (2) и (3) справедливы как для твердого тела, так и для любой системы материальных точек. В случае сплошного тела, разбивая его на элементарные части, найдем, что в пределе сумма, стоящая в равенстве (2), обратится в интеграл. В результате, учитывая, что где - плотность, а V - объем, получим

Интеграл здесь распространяется на весь объем V тела, а плотность и расстояние h зависят от координат точек тела. Аналогично формулы (3) для сплошных тел примут вид

Формулами (5) и (5) удобно пользоваться при вычислении моментов инерции однородных тел правильной формы. При этом плотность будет постоянной и выйдет из-под знака интеграла.

Найдем моменты инерции некоторых однородных тел.

1. Тонкий однородный стержень длиной l и массой М. Вычислим его момент инерции относительно оси перпендикулярной стержню и проходящей через его конец А (рис. 275). Направим вдоль АВ координатную ось Тогда для любого элементарного отрезка длины d величина , а масса , где - масса единицы длины стержня. В результате формула (5) дает

Заменяя здесь его значением, найдем окончательно

2. Тонкое круглое однородное кольцо радиусом R и массой М. Найдем его момент инерции относительно оси перпендикулярной плоскости кольца и проходящей через его центр С (рис. 276).

Так как все точки кольца находятся от оси на расстоянии то формула (2) дает

Следовательно, для кольца

Очевидно, такой же результат получится для момента инерции тонкой цилиндрической оболочки массой М и радиусом R относительно ее оси.

3. Круглая однородная пластина или цилиндр радиусом R и массой М. Вычислим момент инерции круглой пластины относительно оси перпендикулярной пластине и проходящей через ее центр (см. рис. 276). Для этого выделим элементарное кольцо радиусом и шириной (рис. 277, а). Площадь этого кольца , а масса где - масса единицы площади пластины. Тогда по формуле (7) для выделенного элементарного кольца будет а для всей пластину

Зависимость момента инерции от распределения масс

Описание

Момент инерции - величина, характеризующая распределения масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении.

Момент инерции тела относительно оси вращения зависит от массы тела и от распределения этой массы. Чем больше масса тела и чем дальше она отстоит от воображаемой оси, тем большим моментом инерции обладает тело. Момент инерции элементарной (точечной) массы m i , отстоящей от оси на расстоянии r i , равен:

Момент инерции всего тела относительно оси равен:

или, для непрерывно распределенной массы:

Момент инерции всего тела сложной конфигурации обычно определяют экспериментально.

Момент инерции некоторых однородных твердых приведены в таблице 1.

Таблица 1

Момент инерции некоторых симметричных однородных тел

Твердое тело

Ось вращения

Момент инерции I, кг м 2

Тонкий стержень длины l

Перпендикулярна стержню, проходит через центр масс

ml 2 /12

Тонкий стержень длины l

Перпендикулярна стержню, проходит через край

ml 2 /3

Сплошной цилиндр радиуса R

Совпадает с осью цилиндра

mR 2 /2

Полый цилиндр радиуса R

Совпадает с осью цилиндра

mR 2

Шар радиуса R

Проходит через центр шара

2mR 2 /5

Полый шар радиуса R

Проходит через центр шара

2mR 2 /3

Тонкий диск радиуса R

Совпадает с диаметром диска

mR 2 /4

Тонкая прямоугольная пластина со сторонами а и b

Проходит через центр пластины перпендикулярно пластине

m (a 2 +b 2 )/12

Вычисление моментов инерции во многих случаях можно упростить, используя соображения симметрии и теорему Штейнера. Согласно теореме Штейнера момент инерции тела относительно какой-либо оси I A равен моменту инерции тела равен инерции тела относительно параллельной оси, проходящей через центр масс I C , сложенному с величиной ma 2 , где a - расстояние между осями:

I A = I C + ma 2 .

Понятием о моменте инерции широко пользуются при решении многих задач механики и техники.

Временные характеристики

Время инициации (log to от -20 до 20);

Время существования (log tc от -20 до 20);

Время деградации (log td от -20 до 20);

Время оптимального проявления (log tk от -1 до 2).

Диаграмма:

Технические реализации эффекта

"Мягкий" супермаховик

Момент инерции - основная характеристика вращающихся механизмов. Так в маховике стремятся повысить момент инерции за счет распределения большей части массы на обод колеса, для накопления энергии. Маховики применяют для выравнивания хода машин, они присутствуют в любом автомобильном двигателе, в магнитофонах, в швейных машинах, механических ножницах, прессах, гироскопах (см. например, 104002) и т. д.

На рис. 1 приведена схема устройства «мягкого» супермаховика, предназначенного для плавного разгона машин.

«Мягкий» супермаховик

Рис. 1

1 - внешний моток ленты;

2 - промежуточные витки ленты;

3 - барабан.

Повышение или понижение скорости достигается за счет изменения инертности супермаховика с помощью перераспределения массы ленты наполнителя.

Применение эффекта

А.с. 538 800: Способ регулирования энергии ударов в кузнечно-прессовых машинах ударного действия, заключающийся в изменении момента инерции маховых масс, отличающийся тем, что с целью повышения качества обрабатываемых изделий и долговечности машин, момент инерции изменяют путем подачи или отвода жидкости во внутренние полости маховых масс.

А.с. 523 213: Способ уравновешивания сил инерции подвижных элементов машин, заключающийся в том, что уравновешиваемый элемент машины соединяют с аккумулирующим телом и приводит их во вращение, отличающийся тем, что с целью повышения эффективности уравновешивания в качестве аккумулирующего тела используют маховик с изменяемым радиусом центра масс, например, центробежный регулятор.

Силы, возникающие в процессе вращательного движения, можно использовать для ускорения некоторых технологических процессов.

Литература

1. Иродов И.Е. Основные законы механики.- М.: Высшая школа, 1985.- 248 с.

2. Физическая энциклопедия.- М.: Большая Российская энциклопедия, 1992.- Т.3.- С.206-207.

Ключевые слова

  • момент инерции
  • масса тела
  • ось вращения

Разделы естественных наук:

Динамика

Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инерции объекта относительно оси z имеет вид

Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (x 2 i + y 2 i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что расстояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

В качестве простого примера рассмотрим стержень, вращающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3). Нам нужно просуммировать теперь все массы, умноженные на квадраты расстояния х (в этом случае все у — нулевые). Под суммой, разумеется, я имею в виду интеграл от х 2 , умноженный на «элементики» массы. Если мы разделим стержень на кусочки длиной dx, то соответствующий элемент массы будет пропорционален dx, а если бы dx составляло длину всего стержня, то его масса была бы равна М. Поэтому

Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель 1/3.

А чему будет равен момент инерции I, если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от —1/2L до +1/2L. Заметим, однако, одну особенность этого случая. Такой стержень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L/2. Моменты инерции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

Таким образом, стержень гораздо легче крутить за середину, чем за конец.

Можно, конечно, продолжить вычисление моментов инерции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси . Это означает, что мы хотим найти его инертность при вращении вокруг этой оси. Если мы будем двигать тело за стержень, подпирающий его центр масс так, чтобы оно не поворачивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и момент инерции был бы просто равен I 1 = MR 2 ц.м. , где R ц.м — расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инерции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I 1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I 1 нужно добавить I ц — момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен

Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квадратов х и у, т. е. I = Σm i (x 2 i + y 2 i). Мы сейчас сосредоточим наше внимание на х, однако все в точности можно повторить и для у. Пусть координата х есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние х` от центра масс вместо х от начала координат. Чтобы это выяснить, мы должны написать
x i = x` i + X ц.м.
Возводя это выражение в квадрат, находим
x 2 i = x` 2 i + 2X ц.м. x` i + X 2 ц.м.

Что получится, если умножить его на m i и просуммировать по всем r? Вынося постоянные величины за знак суммирования, находим

I x = Σm i x` 2 i + 2X ц.м. Σm i x` i + X2 ц.м. Σm i

Третью сумму подсчитать легко; это просто МХ 2 ц.м. . Второй член состоит из двух сомножителей, один из которых Σm i x` i ; он равен x`-координате центра масс. Но это должно быть равно нулю, ведь х` отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их массами, равно нулю. Первый же член, очевидно, представляет собой часть х от I ц. Таким образом, мы и приходим к формуле (19.7).

Давайте проверим формулу (19.7) на одном примере. Просто проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML 2 /3. А центр масс стержня, разумеется, находится на расстоянии L/2. Таким образом, мы должны получить, что ML 2 /3=ML 2 /12+M(L/2) 2 . Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали никакой грубой ошибки.

Кстати, чтобы найти момент инерции (19.5), вовсе не обязательно вычислять интеграл. Можно просто предположить, что он равен величине ML 2 , умноженной на некоторый неизвестный коэффициент γ. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэффициент 1/4γ. Используя теперь теорему о параллельном переносе оси, докажем, что γ=1/4γ + 1/4, откуда γ=1/3. Всегда можно найти какой-нибудь окольный путь!

При применении теоремы о параллельных осях важно помнить, что ось I ц должна быть параллельна оси, относительно которой мы хотим вычислять момент инерции.

Стоит, пожалуй, упомянуть еще об одном свойстве, которое часто бывает очень полезно при нахождении момента инерции некоторых типов тел. Оно состоит в следующем: если у нас есть плоская фигура и тройка координатных осей с началом координат, расположенным в этой плоскости, и осью z, направленной перпендикулярно к ней, то момент инерции этой фигуры относительно оси z равен сумме моментов инерции относительно осей х и у. Доказывается это совсем просто. Заметим, что

Момент инерции однородной прямоугольной пластинки, например с массой М, шириной ω и длиной L относительно оси, перпендикулярной к ней и проходящей через ее центр, равен просто

поскольку момент инерции относительно оси, лежащей в плоскости пластинки и параллельной ее длине, равен Mω 2 /12, т. е. точно такой же, как и для стержня длиной ω, а момент инерции относительно другой оси в той же плоскости равен ML 2 /12, такой же, как и для стержня длиной L.

Итак, перечислим свойства момента инерции относительно данной оси, которую мы назовем осью z:

1. Момент инерции равен

2. Если предмет состоит из нескольких частей, причем момент инерции каждой из них известен, то полный момент инерции равен сумме моментов инерции этих частей.
3. Момент инерции относительно любой данной оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение полной массы на квадрат расстояния данной оси от центра масс.
4. Момент инерции плоской фигуры относительно оси, перпендикулярной к ее плоскости, равен сумме моментов инерции относительно любых двух других взаимно перпендикулярных осей, лежащих в плоскости фигуры и пересекающихся с перпендикулярной осью.

В табл. 19.1 приведены моменты инерции некоторых элементарных фигур, имеющих однородную плотность масс, а в табл. 19.2 — моменты инерции некоторых фигур, которые могут быть получены из табл. 19.1 с использованием перечисленных выше свойств.

Пусть некоторое тело под действием силы F, приложенной в точке А, приходит во вращение вокруг оси ОО" (рис. 1.14).

Сила действует в плоскости, перпендикулярной оси. Перпендикуляр р, опущенный из точки О (лежащей на оси) на направление силы, называют плечом силы . Произведение силы на плечо определяет модуль мо­мента силы относительно точки О:

М = Fp=Frsinα.

Момент силы есть вектор, определяемый векторным произведением радиуса-вектора точки приложения силы и вектора силы:

(3.1) Единица момента силы - ньютон-метр (Н м).

Направление М можно найти с помощью правила правого винта.

Моментом импульса частицы называется векторное произведение радиус-вектора частицы на её импульс:

или в скалярном виде L = гPsinα

Эта величины векторная и совпадает по направлению с векторами ω.

§ 3.2 Момент инерции. Теорема Штейнера

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от ее распределения в пространстве относительно оси вращения. Мерой инертности при вращательном движении служит величина, назы­ваемая моментом инерции тела относительно оси вращения.

Моментом инерции материальной точки относительно оси враще­ния называют произведение массы этой точки на квадрат расстояния её от оси:

I i =m i r i 2 (3.2)

Момент инерции тела относительно оси вращения называют сумму мо­ментов инерции материальных точек, из которых состоит это тело:

(3.3)

В общем случае, если тело сплошное и представляет собой совокупность точек с малыми массами dm, момент инерции определяется интегрированием:

(3.4)

Если тело однородно и его плотность
, то момент инерции тела

(3.5)

Момент инерции тела зависит от того, относительно какой оси оно вращается и как распределена масса тела по объему.

Наиболее просто определяется момент инерции тел, имеющих правильную геометрическую форму и равномерное распределение массы по объему.

    Момент инерции однородного стержня относительно оси, проходящей через центр инерции и перпендикулярной стержню

(3.6)

    Момент инерции однородного цилиндра относительно оси, перпен­дикулярной его основанию и проходящей через центр инерции,

(3.7)

    Момент инерции тонкостенного цилиндра или обруча относительно оси, перпендикулярной плоскости его основания и проходящей через его центр,

(3.8)

    Момент инерции шара относительно диаметра

(3.9)

Рассмотрим пример. Определим момент инерции диска относительно оси, проходящей через центр инерции и перпендикулярной плоско­сти вращения. Масса диска - m, радиус - R.

Площадь кольца (рис. 3.2), заключенного между

r и r + dr, равна dS = 2πr·dr . Площадь диска S = πR 2 .

Следовательно,
. Тогда

или

Согласно

Приведенные формулы для моментов инерции тел даны при условии, что ось вращения проходит через центр инерции. Чтобы определить моменты инерции тела относительно произвольной оси, следует воспользоваться теоремой Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

(3.11)

Единица момента инерции - килограмм-метр в квадрате (кг· м 2).

Так, момент инерции однородного стержня относительно оси, проходящей через его конец, по теореме Штейнера равен

(3.12)


Close