Минерал меди

Металл, имеющий розовато-красный цвет и температуру плавления – 1083 °С, называется медью. Для этого химического элемента не свойственно содержать полиморфные соединения. Его кристаллизация происходит в гранецентрированной решетке. Влага и углекислый газ оказывает медленное воздействие, вещество обретает зеленый цвет после покрытия пленкой. Этот налет служит в качестве защиты для меди от коррозии.

Где используется медь и ее сплавы? В технике при низких температурах медь и ее сплавы выступают в качестве традиционных материалов. Также, как и для серебра, химического элемента, существенно иметь высокие механические свойства и теплопроводность, обладать коррозийной стойкостью.

Механические и технологические свойства такого элемента, как сплавы на основе меди нарушаются под влиянием вредных примесей таких, как серы и кислорода, висмута и свинца.

Основные технологические процессы получения металла:

1. Для обогащения руды используют метод флотации, при помощи которой соединения меди и пустой породы проходят смачивание. Отдельно подготавливается суспензия с флотационным агентом и соединяется с размельченной рудой. В качестве флотационного агента можно использовать пихтовое масло, благодаря которому на поверхности рудных частичек образуется пленка. На поверхности руды собираются пузырьки, они появляются от продувки воздухом, затем образуется пена. На дно опускается пустая порода, не прошедшая смачивания маслом. До 30% меди находится в собранной и высушенной пене – концентрате.


Подробнее о методе флотации

2. Сернистый газ получается в результате обжига концентрата. Таким образом, получается обожженный медный концентрат и серная кислота, без содержания алюминия. Затем в отражательных печах получается медный штейн, ингредиент, в состав которого входит сульфид железа и медь.

Заливка штейна в конвертер

3. Для продувки штейна предусмотрены конвертеры с кислородом, в них получается черновая медь. У такого ингредиента содержится 1,5% примеси без серебра и алюминия. Во время продувки участвует кварцевый песок, окись железа образуется благодаря переходящим сульфидам, после этого образуется шлак. Серная кислота получается благодаря поступлению сернистого газа.

4. Черновая медь очищается при помощи огневого или электролитического метода. Деревянные жерди используются при огневом способе, а затем происходит пропускание воздуха. Примеси выводятся благодаря окислению жердей кислородом воздуха. Электролитический метод включает в себя установление меди в качестве анода, а медные листы служат в виде катода. Анод начинается растворяться, когда проходит ток, при этом на дне происходит оседание меди на катоде. Изделия из меди и серебра, имеющие вес 60-90 кг можно получить в течение 10 дней. В это время дно ванны наполняется шламом – осадком примеси. Чаще всего шлам состоит из серебра – 35%, золота – 1% и селена – 6%, без железа и свинца, а вот алюминия здесь не обнаружено.

Сплавы химического элемента – меди

Латунь

На основе меди получается двойной или многокомпонентный сплав – латунь, мягче и легче стали. В ней легирует главный ингредиент – цинк. В отличие от меди у металла больше прочности, устойчивости перед коррозиями, а также лучшая обрабатываемость, как у железа и стали. Химический элемент, как алюминий с легкостью можно разрезать, или разлить. Цинк в латуни содержится до 45%, а вот серебра и железа нет. Чем больше металл находится в составе, тем становится менее прочным. Сплавы на основе меди не содержат легирующие ингредиенты больше 7-9%.

Технологический признак металла состоит из литейных и деформируемых веществ. Из этих элементов изготавливают фасонные отливки, они выглядят в форме чушки.


Из деформируемых латуней делают простые элементы. Проволока, прутки, полосы, ленты, трубы, листы, и другие прокатные, а также прессованные изделия считаются полуфабрикатами латуни, напоминающие изделия из алюминия. В общем, и химическом машиностроении металл, так как и бронза широко используется.

Немного о бронзе


Бронза — это сплав меди, в который добавляется олово, марганец, алюминий, свинец, кремний, бериллий, чего нет в стали. Бронза, наподобие серебра, она устойчивая перед коррозией, у нее высокие антифрикционные и хорошие литейные свойства, её легко можно обработать резанием. Чтобы улучшить механические характеристики, а также придать особые свойства металлу — бронза, для легирования используют никель, железо, цинк, титан, фосфор.


Химический состав и механические свойства некоторых бронз

Если к химическому элементу добавить марганец, у элемента появится устойчивость к коррозии, при добавлении никеля, бронза становится пластичней. Чтобы изделие сделать прочным, наподобие стали, рекомендуется добавить немного железа. Улучшит литейные свойства элемента цинк. С помощью свинца, бронза станет более обрабатываемая.

Сплав – никель и медь

Медноникелевым сплавом называется соединение, в котором основой является медь, а легирующий элемент – это никель, алюминия и свинца не обнаружено. В основном используют электротехническими и конструкционными сплавами.

Соединение, состоящее из меди, никеля и алюминия принято называть куниали. Его основными элементами является никель – 6-13%, немного алюминия – 1,5-3%, все остальное занимает медь. В отличие от серебра, это изделие проходит термическую обработку. Из металла изготавливают детали, имеющие повышенную прочность, к ним относятся электротехнические изделия, а также пружины, как изготавливают из стали.

Изделие, которое представляет собой сплав меди с цинком и никелем носит необычное название – нейзильбер. В его составе содержится никель – 15%, цинк – 20%, весь остальной состав принадлежит меди, и нет свинца. Металл, в отличие от стали, обладает приятным белым цветом, который приближен к окраске серебра. Химический элемент, как и бронза, хорошо выдерживает атмосферную коррозию, он служит неотъемлемой частью приборостроения, а также при производстве часов.


Нейзильбер часто используется как конструкционный материал

Для изготовления термопар пользуются специальным термоэлектродным сплавом, который называется – копелем. В состав химического элемента входит никель с медью и составляет 43%, а также марганец, в количестве 0,5%.


Марганцовистая бронза — манганин

Сплав, у которого есть высокое удельное электрическое сопротивление, носит название – манганин. Это изделие состоит из марганца, который составляет 12% и меди с никелем, на них отводится 3%, серебра и железа не обнаружено. При изготовлении электронагревательных приборов в отличие от алюминия и стали, медь и бронза используется чаще.

Важным преимуществом такого металла, как медь и бронза является то, что ее применяют в электротехнической промышленности. Металл широко используют при изготовлении электрических проводов. Чем чище химическое изделие, тем высоко его преимущество. Проводимость электричества упадет на 10%, если в меди будет обнаружено 0,02% алюминия.

В определенной области производства изделия из меди, стали и серебра считаются лучшим материалом. Механические детали производственного оборудования не могут быть изготовлены из другого металла, алюминия или железа. Кроме меди и стали в современном мире высоко ценится бронза. А вот сплав меди с оловом считается прочным металлом, в котором сохранена пластичность.

Видео: Добыча Меди

Основными достоинствами медных сплавов являются высокая коррозионная стойкость в паровоздушной среде, обычной и морской воде, а также хорошие антифрикционные свойства, связанные с низкими значениями коэффициента трения. Кроме того, эти сплавы имеют сравнительно высокие механические свойства, хорошо обрабатываются резанием. Однако медь - дефицитный и дорогой металл, поэтому сплавы на ее основе значительно дороже чугуна и стали.
Самыми распространенными медными сплавами являются бронзы и латуни, обозначаемые в марках этих сплавов соответственно буквами Бр и Л. Содержащиеся в бронзах и латунях легирующие элементы обозначаются начальными буквами их наименований: О - олово, А - алюминий, Ц - цинк, Н - никель, Ж-железо. После буквы следует цифра, указывающая среднее содержание данного элемента в сплаве (% мае.). Так, маркой Бр05Ц5С5 обозначают бронзу, содержащую по 5% олова, цинка и свинца, остальное-85% медь.
Бронзы - это сплавы меди с оловом (оловянные), а также с алюминием, марганцем, железом, свинцом и другими элементами (безоловянные). Оловянные бронзы применяют для литья антифрикционных деталей (подшипников, втулок и др.), а также арматуры и деталей, работающих в пресной и морской воде, в паровоздушной атмосфере и маслах в условиях повышенного давления. Оловянные бронзы (ГОСТ 613-79) обладают хорошими литейными свойствами, что позволяет получать сложные по конфигурации отливки. Однако недостаточная прочность, высокая стоимость и дефицитность олова ограничивают их применение.
Безоловянные бронзы (ГОСТ 493-79), используемые как заменители оловянных, не содержат олова и в зависимости от основного легирующего элемента их подразделяют на алюминиевые, свинцовые и др. Они отличаются повышенными механическими, коррозионными и антифрикционными свойствами. Однако литейные свойства их значительно хуже, обладают большой (до 2,2%) усадкой, склонны к окислению и трещинообразованию.
Наиболее широко применяют алюминиевые бронзы для изготовления тяжелонагруженных деталей ответственного назначения с повышенными антифрикционными свойствами: червячных шестерен, втулок, вкладышей (БрА10ЖЗМц2Л) или деталей, работающих в условиях повышенной коррозии, в морской воде, нефти (БрА10Ж4Н4Л), а также для литья различной ответственной арматуры (БрА10Мц2Л).
Латуни - этой сплавы меди с цинком. Латуни подразделяют по составу на двойные (простые) и специальные, содержащие добавки Fe, Mn, Ni, Si, Sn, Pb, повышающие их механические и эксплуатационные свойства. В зависимости от содержания основного легирующего элемента (кроме Zn) латуни называют (ГОСТ 17711-80) свинцовыми, алюминиевыми, кремнистыми и т. п.
Латуни обладают повышенной коррозионной стойкостью, что позволяет использовать их для изготовления деталей и арматуры, работающих в условиях агрессивных сред, например в морской воде (ЛЦ16К4, ЛЦ40МцЗЖ), ответственных деталей, работающих при высоких нагрузках (ЛЦ23А6ЖЗМц2), а также при повышенных давлениях и как антифрикционный материал (ЛЦ38Мц2С2).
Латуни имеют удовлетворительные литейные свойства. Отливки из них получаются плотными с небольшой пористостью и значительной сосредоточенной усадочной раковиной. Усадка латуней выше, чем у оловянных бронз, и примерно такая же, как у алюминиевых бронз - 1,6-2,1%.

Медь – металл красного (светло-розового) цвета с плотностью 8,94 г/см 3 , имеющий кристаллическую решетку ГЦК, без полиморфных превращений и температурой плавления 1083°С.

Широкое применение меди обусловлено рядом ее ценных свойств и прежде всего высокой электро- и теплопроводностью. Медь принято считать эталоном электрической проводимости и теплопроводности по отношению к другим металлам. Медь обладает высокой пластичностью, хорошей коррозионной стойкостью, удовлетворительной жидкотекучестью. Медь и ее сплавы хорошо обрабатываются давлением, свариваются всеми видами сварки и легко поддаются пайке. На поверхности меди образуется плотная оксидная пленка, поэтому медь имеет высокую коррозионную стойкость в пресной и морской воде, в атмосферных условиях и различных химических средах (органических кислотах, едких щелочах). Однако медь не противостоит воздействию азотной и соляной кислот, концентрированной серной кислоты, аммиака. Недостатком меди является сравнительно плохая обрабатываемость резанием.

Электрическая проводимость меди зависит от содержания примесей. При наличии даже небольшого количества примесей электрическая проводимость резко падает. По ГОСТ 859-78 в зависимости от содержания примесей различают следующие марки меди: М00 (99,99% Сu), М0 (99,97% Сu), М1 (99,9% Сu), М2 (99,7% Сu), М3 (99,5% Сu). Наиболее чистую медь марок М00, М0, М1, содержащую не более 0,1% примесей, применяют для проводников тока различных теплообменников. Медь остальных марок, более загрязненная примесями, пригодна только для производства сплавов различного состава и качества (М3, М4).

Наиболее часто встречающиеся в меди элементы подразделяют на две группы:

1. Растворимые в меди элементы алюминий (Al), железо (Fe), никель (Ni), стронций (Sr), цинк (Zn), серебро (Ag) повышают прочность и твердость меди и используются для легирования сплавов на медной основе.

2. Нерастворимые элементы свинец (Pb), висмут (Bi) ухудшают механические свойства меди. Висмут и свинец даже в тысячных долях процента резко ухудшают способность меди обрабатываться путем прокатки или волочения. С этими элементами медь образует легкоплавкие эвтектики, которые, располагаясь по границам зерен, при нагреве расплавляются и вызывают красноломкость меди, т.е. приводят к разрушению металла при горячей деформации. Висмут, будучи хрупким металлом, охрупчивает медь и ее сплавы. Свинец, обладая низкой прочностью, снижает прочность медных сплавов, однако вследствие хорошей пластичности не вызывает их охрупчивание. Кроме того, свинец улучшает антифрикционные свойства и обрабатываемость резанием медных сплавов, поэтому его применяют для легирования.

Механические свойства меди в большей степени зависят от ее состояния и в меньшей от содержания примесей. В отожженном виде медь весьма пластична (δ = 50%, HB50, σ в = 240 МПа). В деформированном состоянии (при наклепе) пластичность меди понижается, но прочность повышается (δ=2-5 %, HB120, σ в = 500 МПа). Исходные свойства меди восстанавливают путем отжига при температуре 600…700°С.

12.1. Общая характеристика и классификация медных сплавов.

Для повышения прочностных свойств медь легируют цинком, оловом, алюминием, марганцем, железом, кремнием, никелем. Повышая прочность медных сплавов, легирующие элементы практически не снижают, а некоторые из них (цинк, алюминий) увеличивают пластичность. Высокая пластичность – отличительная особенность медных сплавов. По прочности медные сплавы уступают сталям. Сплавы меди устойчивы против коррозии, обладают хорошими антифрикционными, технологическими и механическими свойствами и широко используются в качестве конструкционных материалов.

По технологическим свойствам медные сплавы подразделяют на деформируемые (обрабатываемые давлением) и литейные. Из деформируемых медных сплавов изготавливают трубы, листы, ленту, проволоку, из литейных путем литья различные фасонные детали.

По способности упрочняться с помощью термической обработки медные сплавы делятся на упрочняемые и неупрочняемые термической обработкой.

По химическому составу медные сплавы подразделяют на две основные группы: латуни и бронзы.

Медные сплавы маркируют по химическому составу, используя буквы для обозначения элементов и числа для указания их массовых долей. В медных сплавах буквенные обозначения отличаются от обозначений, принятых для сталей. Алюминий в них обозначают буквой А, бериллий – Б, железо – Ж, кремний – К, магний – Мг, марганец – Мц, медь – М, мышьяк – Мш, никель – Н, олово – О, свинец – С, серебро – Ср, сурьма – Су, фосфор – Ф, цинк – Ц, цирконий – Цр, хром – Х.

12.2. Латуни.

Латунями называют сплавы меди с цинком, а иногда с добавками небольшого количества других элементов. Из цветных сплавов латуни являются самыми распространенными.

По назначению и технологическим признакам латуни подразделяются на деформируемые и литейные.

Латуни маркируются буквой Л . В деформируемых латунях, не содержащих кроме меди и цинка других элементов, за буквой Л ставиться число, показывающее среднее содержание меди. В многокомпонентных латунях после Л ставятся буквы – символы элементов, а затем числа, указывающие содержание меди и каждого легирующего элемента. Например, латунь марки Л68 содержит 68% меди, остальное цинк. Латунь ЛЖМц 59-1-1 содержит 59% меди, 1% железа, 1% марганца, остальное – цинк. В марках литейных латуней указывается содержание цинка, а количество каждого легирующего элемента ставиться непосредственно за буквой, обозначающей его. Например, латунь ЛЦ40Мц3А содержит 40% цинка, 3% марганца, 1% алюминия, остальное – медь.

Медь и ее сплавы - прекрасные материалы, которые используются практически во всех сферах промышленного производства. Будет достаточно трудно представить без нее современный мир. Это неудивительно, ведь любой доклад подтверждает ее исключительные характеристики.

1 Исторический ракурс

Медь имеет большое значение для человека. Медными были первые орудия труда, выполненные из металла. Обрабатывали металл холодным способом, о чем свидетельствуют раскопки на побережье реки Гудзон в Северной Америке. Эту традицию индейцы сохранили до прибытия на континент Христофора Колумба.

Доподлинно известно, что наши предки начали добычу металла из медной руды около 7 тысяч лет тому назад.

Этот податливый материал во многом определил последующие тенденции в развитии человеческой культуры и истории.

Царствование меди в мире металлов продолжалось всего тысячу лет, ровно до той поры, пока не был открыт первый медный сплав, названный бронзой (в честь маленького купеческого городка). Древние люди быстро перешли на изготовление изделий из нового сплава, поскольку он обладал лучшими характеристиками: бронза тверже и плотнее меди, к тому же температура плавления у нее ниже. Египтяне, ассирийцы и индусы активно использовали бронзовые изделия, но отливать массивные сооружения научились только к V веку до нашей эры, о чем свидетельствуют найденные археологами древнегреческие статуи. Известное чудо древности - Колосс Родосский - был отлит из бронзы и установлен над входом в гавань порта Родос в III веке до нашей эры.

Медные листы использовали на Руси для кровли храмов. Специальные медные сплавы применялись для отливки пушечных орудий и церковных колоколов.

Медь обнаружена в составе почти 200 минералов, но стратегически важными оказались всего 17 из них, например, такие как медный колчедан (CuFeS2), халькозин (Сu2S), бронзит (Cu5FeS4) и ковеллин (CuS).

Формирование залежей медной руды в земной коре происходило неравномерно. Самые большие месторождения меди сегодня расположены в районе Конго. На территории России первые выработки меди производились в Закавказье и Сибири. Из летописей известно, что первые медные заводы в России появились в XVII веке.

Обнаружены значительные залежи руды на океаническом дне.

2 Физико-химические свойства меди

Незначительная примесь кислорода обеспечила меди красноватый оттенок. Если воздействие кислорода исключить полностью, цвет металла изменится на желтый.

Начищенная медь обладает ярко выраженным блеском. Чем выше валентность, тем слабее окрас. Так, оксид CuCl имеет белый цвет, Cu2O - красный, CuO - черный. Карбонаты меди, как правило, синего или зеленого цвета.


Медь - второй металл после серебра, обладающий высокой электропроводностью, благодаря чему он широко используется в электронике.

Медь слабо вступает в реакцию с кислородом, имеет свойство окисляться на воздухе и покрываться пленкой. В сухом воздухе окисление происходит очень медленно: 4Cu+O2=2Cu2O. Металлы этой группы не способны вытеснить водород из воды и кислот.

3 Особенности оксида меди

Этот оксид можно получить, прокаливая медь, нитрат или гидрокарбонат на воздухе. Оксид меди способен окислять органические соединения, что позволяет проводить анализ соединений на предмет наличия в них водорода или углерода.


Купроксные выпрямители электрического тока имеют в своей основе закись меди.

Растворением меди в концентрате серной кислоты получают медный купорос. Он необходим в химической промышленности и до сих пор применяется для защиты урожая.

4 Широко применяемые сплавы меди

Легирующий компонент практически во всех ныне используемых в производстве сплавах меди составляет менее 10%, исключением из этого правила является латунь. В качестве легирующего компонента могут использоваться такие элементы, как золото, фосфор, марганец, цинк.

Все зависит от того, какие свойства сплава необходимы. Среди интересующих характеристик особенно выделяют прочность, износоустойчивость и термостойкость. Олово, алюминий и кремний улучшают пластичность, большое количество легирующего компонента, напротив, увеличивает хрупкость. Так, например, медно-никелевый сплав (его маркировка - МНЖ5-1) хорошо обрабатывается давлением как в горячем, так и в холодном состоянии. Именно поэтому его используют при чеканке монет, а сплав серебра и меди - в ювелирном деле.


Основные виды сплавов меди и их классификация:

  1. Сплав меди с оловом - один из первых сплавов. Великолепные статуи Греции, произведения, имеющие и сегодня непревзойденную художественную ценность, отливались именно из оловянистых бронз. Сегодня процесс производства сплава с оловом усовершенствован. В технологическом процессе задействованы электрические дуговые печи, а защита сплава от окисления производится в вакууме. Для увеличения прочности и пластичности бронзы в технологический процесс производства включают такие этапы, как закаливание и старение сплава с оловом.
  2. Алюминиевая бронза - это сплав алюминия с медью, он хорошо деформируется и слабо поддается коррозии. Его применяют для изготовления конструкционных элементов и деталей, подвергающихся воздействию высоких температур.
  3. Сплавы меди и свинца являются непревзойденными материалами с антифрикционными свойствами. Добавление свинца значительно повышает прочность.
  4. Латунь. Двухкомпонентный или многокомпонентный сплав, в основе которого имеется медь, такой как томпак или полутомпак, называется латунью.
  5. Нейзильбер - это медно-никелевый сплав с никелем от 5 до 35% и цинком. Его стоимость дешевле мельхиора, но полностью аналогичен ему по внешнему виду и свойствам.
  6. Сплав меди с железом возможен благодаря близким физико-химическим параметрам металлов, однако разница в температурах плавления придает такому сплаву высокую пористость.

Латуни славятся высокой прочностью благодаря содержанию в них цинка (40-45%). Легкость в обработке делает латунь предпочтительней чистой меди. Этот сплав на основе меди используется преимущественно в приборостроении. Прочность латуни, которая содержит небольшой процент алюминия, марганца и других металлов, достигает 90 кг/мм². Она применяется при изготовлении запорной арматуры, подшипниковых вкладышей.

5 Применение сплавов

Пожалуй, трудно отыскать производственную отрасль, которая бы не использовала изделия из меди или ее сплавов. В чистом виде такой металл, как медь, задействован в электротехнических коммуникациях. Электрическая проводка, электродвигатели и кабельные изделия невозможно представить без участия меди.


Трубопроводы, вакуумные машины, теплообменные камеры на 1/3 состоят из меди.

Сплавы благодаря их выверенным свойствам применяют в автомобильной промышленности и сельскохозяйственном машиностроении. Высокая устойчивость к коррозии позволяет медным сплавам участвовать в изготовлении химической аппаратуры, а сплав меди со свинцом используется в производстве сверхпроводниковой техники.

Изделия со сложным узором требуют вязких и пластичных сплавов, например, сплав серебра. Этим запросам отвечает мягкая медь, из которой можно формировать любые шнуры и элементы. Проволоку легко гнуть и паять вместе с такими элементами, как золото и серебро.

Медные сплавы хорошо взаимодействуют с эмалями. Эмалированная поверхность может сохраняться длительное время, не отслаиваясь и не растрескиваясь, на поверхности меди. Таково применение сплавов.

сплавы на основе меди, в к-рых легирующими элементами являются олово, цинк, свинец, никель, алюминий, марганец, железо, серебро, золото, фосфор, кремний и др..

В зависимости от легирующих компонентов медные сплавы могут быть высоко электро- и теплопроводными, пластичными и достаточно прочными при высоких темп-рах, износо-и мимически стойкими, высокоупругими. Добавки к двойным медноцинковым сплавам небольших количеств олова, алюминия, никеля, кремния, марганца, железа, свинца и др. повышают прочность, твердость, обрабатываемость резанием, придают хорошие литейные св-ва и пр. Сложные медноцинковые сплавы наз. спец. латунями.

Сплавы меди с оловом ранее назывались просто бронзами . С появлением сплавов меди с др. легирующими металлами (кроме цинка), к-рые также наз. бронзами, медно- оловянные сплавы получили название оло- вянистых бронз, а сплавы меди с др. металлами стали называться по главному (кроме меди) компоненту сплава - напр. алюминиевыми, бери л лиевыми, кремнистыми и др. бронзами.

Оловянистые бронзы - древнейшие сплавы, к-рыми научился пользоваться человек. От древних культур Египта, Греции, Рима, Китая и более поздних веков остались многочисленные художественные изделия из бронзы. Медные сплавы изготовляются сплавлением меди с др. элементами или их сплавами - лигатурами - в пламенных печах, чаще электрических (дуговых, индукционных, высокочастотных, печах сопротивления). При плавке для защиты от окисления применяют древесный уголь, флюс или плавку ведут в вакууме. В наст, время нек-рые медные сплавы получают путем электролиза комплексных водных растворов или диффузии в поверхностные слои металлич. изделий. Однофазные ма делегированные сплавы легче деформируются при комнатной темп-ре, чем высоколегированные - с двухфазной структурой. При высоких же темп-pax легче деформируются двухфазные сплавы и сильнее сопротивляются деформированию сплавы однофазные.

Медные сплавы применяют в литом и деформированном состоянии. Сплавы в деформированном состоянии обладают более высокой прочностью и плотностью.

Термич. обработка (закалка и старение) медных сплавов в ряде случаев повышает прочность, увеличивает пластичность (закалка), уменьшает внутренние напряжения (отжиг).

Сплавы меди с др. металлами обычно содержат не более 10% основного легирующего элемента, а прочие компоненты (в более сложных составах) в еще меньших количествах. Исключением являются только латуни, содержащие цинк значительно больше 10%. Добавки к меди олова, алюминия, кремния, бериллия и др. значительно повышают прочность при сохранении пластичности. В присутствии больших количеств легирующего элемента сплавы становятся хрупкими.

К числу наиболее прочных и достаточно пластичных медных сплавов относятся алюминиевые бронзы, содержащие небольшие количества железа, никеля, марганца. Их предел прочности составляет 50-65 кг!мм2 при удлинении 8-12%. Сплавы обладают хорошими литейными св-вами и легко обрабатываются давлением, отличаются повыш. коррозионной стойкостью. Благодаря высоким механич. и технологич. св-вам широко применяются для изготовления конструкционных деталей различного назначения, а также для деталей, работающих при повыш. темп-pax. Бериллиевые бронзы в термически обработанном состоянии имеют еще большую прочность, высокий предел упругости и твердость; коррозионноустойчивы и легко обрабатываются давлением в закаленном состоянии. Предел прочности бериллиевых бронз достигает 150 кг!мм2, предел упругости 110 кг!мм2, твердость 400 кг!мм2, но при этом удлинение не превышает 1%.

Латуни, особенно специальные, содержащие небольшое количество алюминия, железа, марганца и др. металлов, также относятся к числу сплавов, обладающих высокими механич. св-вами, высокой деформируемостью и хорошими литейными качествами. Их предел прочности изменяется от 30 до 50 кг!мм2 при удлинении до 25%. В наклепанном состоянии предел прочности достигает 90 кг/мм2. Благодаря значит, количеству цинка эти сплавы являются наиболее экономичными. Хорошие механич. и высокие технологич. св-ва обеспечили латуням широкое применение для изготовления разнообразных деталей.

Бронзы оловянистые, сурьмянистые, свинцовистые являются прекрасными антифрикционными материалами. Сплавы меди с небольшим количеством (в сумме не более 0,5-1,5%) хрома, циркония, кадмия, никеля, кобальта, бериллия и др. представляют собой группу сплавов с особыми физич. св-вами: высокой тепло- и электропроводностью при хорошей теплостойкости (предел прочности при 500-600° составляет 15-20 кг/мм2).

Марка медных сплавов , в к-рой указывается его состав, для бронз начинается буквами Бр, а для латуней - буквой Л. Далее у бронз указываются начальные буквы наименования легирующих компонентов и цифровые индексы, соответствующие их среднему содержанию в сплаве. Напр., бронза алюми- ниевожелезная с 10% А1 и 4% Fe имеет марку БрАЖ10-4, что означает наличие в сплаве 10% А1 и 4% Fe.

В марках латуней после буквы Л также указываются начальные буквы легирующих компонентов, потом дается цифровой индекс, соответствующий процентному содержанию меди в сплаве, и далее (в том же порядке, что и буквы) приводятся цифры процентного содержания в сплаве легирующих компонентов. Так, напр., латунь, содержащая 70% Си и 1% Sn, обозначается маркой Л070-1.

Лит.: Бочвар А. А., Металловедение, 5 изд., М., 1956; Смирягин А. П., Промышленные цветные металлы и сплавы, 2 изд., М., 1956; Бауэр О. и Ганзен М., Строение медноцинковых сплавов, пер. с нем., М., 1934; Туркин В. Д., Румянцев М. В., Структура и св-ва цветных металлов и сплавов, М., 1947; Мальцевы. В., Барсукова Т. А., Борин Ф. А., Металлография цветных металлов и сплавов

Катодный состав сплава сильно зависит от плотности тока. При снижении плотности тока осадки приобретают красноватый оттенок, характерный для меди, а при повышении - светло-серый, так как обогащаются оловом. По этой причине необходим надежный контакт всех деталей с подвесками, иначе детали получаются разнотонными. Также требуется такая конструкция катодных подвесок, которая обеспечивает равномерное распределение тока на всех деталях. В электрической схеме следует предусмотреть плавную регулировку тока на ванне. Осадки электролитической бронзы, полученные из кислого электролита указанного выше состава, полублестящие и легко поддаются глянцовке. Так как бронзовые покрытия в обычных условиях темнеют, их следует применять в сочетании с прозрачными лаковыми пленками. Лучшими лаками для этого являются мочевиноформальдегидные типа УВЛ-1 и

Перспективными являются фенолсульфоновые электролиты, которые дают осадки хорошего качества, прочно сцепленные со стальной основой.

Сплав медь – свинец. Сплавы меди со свинцом отличаются хорошими антифрикционными свойствами. При подборе электролитов для совместного осаждения меди и свинца необходимо учитывать ограниченную растворимость некоторых свинцовых солей. Поэтому не могут быть использованы сернокислые и хлористые растворы. Для осаждения сплава медь-свинец можно применять цианистые и азотнокислые электролиты. Лучшие по качеству покрытия получаются в цианистотартратных электролитах следующего состава (г/л) и при режиме процесса:

Медь цианистая CuCN………… 150

Свинец уксуснокислый РЬ(СН3СОО)2 …. 75

Натрий цианистый NaCN………. 150

Натр едкий NaOH…………. 40

Сегнетова соль KNaC4H406 * 4Н20 …… 200

Катодная плотность тока, А/дм2 …… 3

Температура, °С………….. 40

В сплаве содержится 28-30% свинца.


Close