Разберём классическое определение вероятности при помощи формул и примеров.

Случайные события называются несовместимыми , если они не могут происходить одновременно. Например, когда мы подкидываем монету, выпадет что-то одно – «герб» или число» и они не могут появится одновременно, так как логично, что это невозможно. Несовместимыми могут быть такие события, как попадание и промах после сделанного выстрела.

Случайные события конечного множества образовывают полную группу попарно несовместимых событий, если при каждом испытании появляется одна, и только одна из этих событий – единственно возможные.

Рассмотрим всё тот же пример с подкидыванием монеты:

Первая монета Вторая монета События

1) «герб» «герб»

2) «герб» «число»

3) «число» «герб»

4) «число» «число»

Или сокращённо – «ГГ», – «ГЧ», – «ЧГ», – «ЧЧ».

События называются равновозможными , если условия исследования обеспечивают одинаковую возможность появления каждой из них.

Как вы понимаете, когда подбрасываете симметричную монету, тогда у неё одинаковые возможности, и есть вероятность, что выпадет как «герб», так и «число». Это же касается подбрасывания симметричного игрального кубика, так как есть вероятность того, что могут появится грани с любым числом 1, 2, 3, 4, 5, 6.

Допустим, что теперь кубик подбрасываем со смещением центра тяжести, например, в сторону грани с цифрой 1, тогда чаще всего будет выпадать противоположная грань, то есть грань с другой цифрой. Таким образом, в этой модели возможности появления для каждой из цифр от 1 до 6 будут разными.

Равновозможные и единственно возможные случайные события называются случаями.

Есть случайные события, которые относятся к случаям, а есть случайные события, которые не относятся к случаям. Ниже на примерах рассмотрим эти события.

Те случаи, в результате которых случайное событие появляется, называются благоприятными случаями для этого события.

Если обозначить через , которые влияют на событие при всех возможных случаях, а через – вероятность случайного события , тогда можно записать известное классическое определение вероятности:

Определение

Вероятность события называют отношения числа благоприятных этому событию случаев, к общему числу всех возможных случаев, то есть:

Свойства вероятности

Классическая вероятность рассмотрена, а теперь разберём основные и важные свойства вероятности.

Свойство 1. Вероятность достоверного события равняется единице.

Например, если в ведёрке все шариков белые, тогда событию , наугад выбрать белый шарик, влияют случаев, .

Свойство 2. Вероятность невозможного события равняется нулю.

Свойство 3. Вероятностью случайного события есть положительное число:

Значит, вероятность любого события удовлетворяет неравенство:

Теперь решим несколько примеров на классическое определение вероятности.

Примеры классического определения вероятности

Пример 1

Задача

В корзине 20 шариков, из них 10 белых, 7 красных и 3 чёрных. Наугад выбирается один шарик. Выбран белый шарик (событие ), красный шарик (событие ) и чёрный шарик (событие ). Найти вероятность случайных событий .

Решение

Согласно условию задачи, способствуют , а случаев из возможных, поэтому по формуле (1):

– вероятность белого шарика.

Аналогично для красного:

И для чёрного: .

Ответ

Вероятность случайного события , , .

Пример 2

Задача

В ящике лежат 25 одинаковых электроламп, из них 2 бракованные. Найти вероятность того, что наугад выбранная электролампа не бракованная.

Решение

По условию задачи все лампы одинаковые и выбирается только одна. Всего возможностей выбрать . Среди всех 25 лампа две бракованные, значит, оставшихся пригодных лампа . Поэтому по формуле (1) вероятность выбора пригодной электролампы (событие ) равняется:

Ответ

Вероятность того, что наугад выбранная электролампа не бракованная = .

Пример 3

Задача

Наугад подбрасываются две монеты. Найти вероятность таких событий:

1) – на обеих монетах выпало по гербу;

2) – на одной из монет выпал герб, а на второй – число;

3) – на обеих монетах выпали числа;

4) – хотя бы один раз выпал герб.

Решение

Здесь имеем дело с четырьмя событиями . Установим, какие случаи способствуют каждой из них. Событию способствует один случай, это когда на обеих монетах выпал герб (сокращённо «ГГ»).

Чтобы разобраться с событием , представим, что одна монета серебряная, а вторая – медная. При подбрасывании монет могут быть случаи:

1) на серебряной герб, на медной – число (обозначим – «ГЧ»);

2) на серебряной число, на медной – герб ( – «ЧГ»).

Значит, событию способствуют случаи и .

Событию способствует один случай: на обеих монетах выпали числа – «ЧЧ».

Таким образом, события или (ГГ, ГЧ, ЧГ, ЧЧ) образовывают полную группу событий, все эти события несовместимы, так как в результате подбрасывания происходит только одна из них. Кроме того, для симметричных монет все четыре события равновозможные, поэтому их можно считать случаями. Всех возможных событий – четыре .

Событию способствует только одно событие, поэтому его вероятность равняется:

Событию способствуют два случая , поэтому:

Вероятность события такая же, как и для :

Событию способствуют три случая: ГГ, ГЧ, ЧГ и поэтому:

Так как рассмотрены события ГГ, ГЧ, ЧГ, ЧЧ, которые равновозможные и создают полную группу событий, тогда появление любой из них – это достоверное событие (обозначим её буквой , которой способствуют все 4 случая . Поэтому вероятность:

Значит, подтверждается первое свойство вероятности.

Ответ

Вероятность события .

Вероятность события .

Вероятность события .

Вероятность события .

Пример 4

Задача

Подкидываются два игральных кубика с одинаковой и правильной геометрической формой. Найти вероятность всех возможных сумм на обеих гранях, что выпадают.

Решение

Чтобы было удобнее решать задачу, представьте, что один кубик белый, а второй – чёрный. С каждой из шести граней белого кубика и также может выпасть одна из шести граней чёрного кубика, поэтому всех возможных пар будет .

Так как возможность появления граней на отдельном кубике одинаковая (кубики правильной геометрической формы!), тогда одинаковой будет возможность появления каждой пары граней, причём, в результате подбрасывания выпадает только одна из пар. Значи события несовместимы, единовозможные. Это случаи, и всех возможных случаев – 36.

Теперь рассмотрим возможность значения суммы на гранях. Очевидно, что самая маленькая сумма 1 + 1 = 2, а самая большая 6 + 6 = 12. Оставшаяся часть суммы вырастает на единицу, начиная со второй. Обозначим событий, индексы которых равняются сумме очков, что выпали на гранях кубиков. Для каждой из этих событий выпишем благоприятные случаи при помощи обозначений , где – сумма, – очки на верхней грани белого кубика и – очки на грани чёрного кубика.

Значит, для события:

для – один случай (1 + 1);

для – два случая (1 + 2; 2 + 1);

для – три случая (1 + 3; 2 + 2; 3 + 1);

для – четыре случая (1 + 4; 2 + 3; 3 + 2; 4 + 1);

для – пять случаев (1 + 5; 2 + 4; 3 + 3; 4 + 2; 5 + 1);

для – шесть случаев (1 + 6; 2 + 5; 3 + 4; 4 + 3; 5 + 2; 6 + 1);

для – пять случаев (2 + 6; 3 + 5; 4 + 4; 5 + 3; 6 + 2);

для – четыре случая (3 + 6; 4 + 5; 5 + 4; 6 + 3);

для – три случая (4 + 6; 5 + 5; 6 + 4);

для – два случая (5 + 6; 6 + 5);

для – один случай (6 + 6).

Таким образом значения вероятности такие:

Ответ

Пример 5

Задача

Троим участникам перед фестивалем предложили тянуть жребий: каждый из участников по очереди подходит к ведёрку и наугад выбирает одну из трёх карточек с номерами 1, 2 и 3, что означает порядковый номер выступления данного участника.

Найти вероятность таких событий:

1) – порядковый номер в очереди совпадает с номером карточки, то есть порядковым номером выступления;

2) – ни один номер в очереди не совпадает с номером выступления;

3) – только один из номеров в очереди совпадает с номером выступления;

4) – хотя бы один из номеров в очереди совпадёт с номером выступления.

Решение

Возможными результатами выбора карточек – это перестановки из трёх элементов , количество таких перестановок равняется . Каждая из перестановок и есть событие. Обозначим эти события через . Каждому событию припишем в скобках соответствующую перестановку:

; ; ; ; ; .

Перечисленные события равновозможные и единовозможные, то есть, это и есть случаи. Обозначим так: (1ч, 2ч, 3ч) – соответствующие номера в очереди.

Начнём с события . Благоприятный только один случай поэтому:

Благоприятными для события – два случая и , поэтому:

Событию способствуют 3 случая: , поэтому:

Событию , кроме , способствует ещё и , то есть:

Ответ

Вероятность события – .

Вероятность события – .

Вероятность события – обновлено: Сентябрь 15, 2017 автором: Научные Статьи.Ру

Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях. Возникновение теории относится к середине XVII века и связано с именем Гюйгенса, Паскаля, Ферма, Я. Бернулли.

Неразложимые исходы,..., некоторого эксперимента будем называть элементарными событиями, а их совокупность

(конечным) пространством элементарных событий, или пространством исходов.

Пример 21. а) При подбрасывании игральной кости пространство элементарных событий состоит из шести точек:

б) Подбрасываем монету два раза подряд, тогда

где Г - "герб", Р - "решетка" и общее число исходов

в) Подбрасываем монету до первого появления "герба", тогда

В этом случае называется дискретным пространством элементарных событий.

Обычно интересуются не тем, какой конкретно исход имеет место в результате испытания, а тем, принадлежит ли исход тому или иному подмножеству всех исходов. Все те подмножества, для которых по условиям эксперимента возможен ответ одного из двух типов: "исход " или "исход ", будем называть событиями.

В примере 21 б) множество = {ГГ, ГР, РГ} является событием, состоящим в том, что выпадает по крайней мере один "герб". Событие состоит из трех элементарных исходов пространства, поэтому

Суммой двух событий и называется событие, состоящее в выполнении события или события.

Произведением событий и называется событие, состоящее в совместном исполнении события и события.

Противоположным по отношению к событию называется событие, состоящее в непоявлении и, значит, дополняющее его до.

Множество называется достоверным событием, пустое множество - невозможным.

Если каждое появление события сопровождается появлением, то пишут и говорят, что предшествует или влечет за собой.

События и называются равносильными, если и.

Определение. Вероятностью события называется число, равное отношению числа элементарных исходов, составляющих событие, к числу всех элементарных исходов

Случай равновозможных событий, (называется "классическим", поэтому и вероятность

называется "классической".

Элементарные события (исходы опыта), входящие в событие, называются "благоприятными".

Свойства классической вероятности:

Если (и - несовместные события).

Пример 22 (задача Гюйгенса). В урне 2 белых и 4 черных шара. Один азартный человек держит пари с другим, что среди вынутых 3 шаров будет ровно один белый. В каком отношении находятся шансы спорящих?

Решение 1 (традиционное). В данном случае испытание = {вынимание 3 шаров}, а событие - благоприятствующее одному из спорящих:

= {достать ровно один белый шар}.

Поскольку порядок вынимания трех шаров не важен, то

Один белый шар можно достать в случаев, а два черных - , и тогда по основному правилу комбинаторики. Отсюда а по пятому свойству вероятности Следовательно,

Решение 2. Составим вероятностное дерево исходов:

Пример 23. Рассмотрим копилку, в которой осталось четыре монеты - три по 2 руб. и одна в 5 руб. Извлекаем две монеты.

Решение. а) Два последовательных извлечения (с возвращением) могут привести к следующим исходам:

Какова вероятность каждого из этих исходов?

В таблице показаны все шестнадцать возможных случаев.

Следовательно,

К тем же результатам ведет и следующее дерево:

б) Два последовательных извлечения (без повторения) могут привести к следующим трем исходам:

В таблице покажем все возможные исходы:

Следовательно,

К тем же результатам ведет и соответствующее дерево:

Пример 24 (задача де Мере). Двое играют в "орлянку" до пяти побед. Игра прекращена, когда первый выиграл четыре партии, а второй - три. Как в этом случае следует поделить первоначальную ставку?

Решение. Пусть событие = {выиграть приз первым игроком}. Тогда вероятностное дерево выигрыша для первого игрока следующее:

Отсюда, и три части ставки следует отдать первому игроку, а второму - одну часть.

Покажем эффективность решения вероятностных задач с помощью графов и на следующем примере, который мы рассматривали в §1 (пример 2).

Пример 25. Является ли выбор с помощью "считалки" справедливым?

Решение. Составим вероятностное дерево исходов:

и, следовательно, при игре в "считалки" выгодней стоять вторым.

В последнем решении использованы интерпретации на графах теорем сложения и умножения вероятностей:

и в частности

Если и - несовместные события

и, если и - независимые события.

Статическая вероятность

Классическое определение при рассмотрении сложных проблем наталкивается на трудности непреодолимого характера. В частности, в некоторых случаях выявить равновозможные случаи может быть невозможно. Даже в случае с монеткой, как известно существует явно не равновероятная возможность выпадения "ребра", которую из теоретических соображений оценить невозможно (можно только сказать, что оно маловероятно и то это соображение скорее практическое). Поэтому еще на заре становления теории вероятностей было предложено альтернативное "частотное" определение вероятности. А именно, формально вероятность можно определить как предел частоты наблюдений события A, предполагая однородность наблюдений (то есть одинаковость всех условий наблюдения) и их независимость друг от друга:

где - количество наблюдений, а - количество наступлений события.

Несмотря на то, что данное определение скорее указывает на способ оценки неизвестной вероятности - путем большого количества однородных и независимых наблюдений - тем не менее в таком определении отражено содержание понятия вероятности. А именно, если событию приписывается некоторая вероятность, как объективная мера его возможности, то это означает, что при фиксированных условиях и многократном повторении мы должны получить частоту его появления, близкую к (тем более близкую, чем больше наблюдений). Собственно, в этом заключается исходный смысл понятия вероятности. В основе лежит объективистский взгляд на явления природы. Ниже будут рассмотрены так называемые законы больших чисел, которые дают теоретическую основу (в рамках излагаемого ниже современного аксиоматического подхода) в том числе для частотной оценки вероятности.

Полезная страница? Сохрани или расскажи друзьям

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами или элементарными событиями . Исход называется благоприятствующим появлению события $А$, если появление этого исхода влечет за собой появление события $А$.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события $A$ называют отношение числа $m$ благоприятствующих этому событию исходов к общему числу $n$ всех равновозможных несовместных элементарных исходов, образующих полную группу $$P(A)=\frac{m}{n}. \quad(1)$$

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству $0 \le P(A) \le 1$ .

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

  • Задача про шары (в урне находится $k$ белых и $n$ черных шаров, вынимают $m$ шаров...)
  • Задача про детали (в ящике находится $k$ стандартных и $n$ бракованных деталей, вынимают $m$ деталей...)
  • Задача про лотерейные билеты (в лотерее участвуют $k$ выигрышных и $n$ безвыигрышных билета, куплено $m$ билетов...)

Примеры решений задач на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m =n =10. Следовательно, Р (А )=1. Событие А достоверное .

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m =0, n =15. Следовательно, искомая вероятность р =0. Событие, заключающееся в вынимании синего шара, невозможное .

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение . Количество элементарных исходов (количество карт) n =36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А , m =9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Классическое и статистическое определение вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем


Close