Конструкционная сталь конструкцио́нная сталь

общее название сталей, предназначенных для изготовления строительных конструкций и деталей машин или механизмов.

КОНСТРУКЦИОННАЯ СТАЛЬ

КОНСТРУКЦИО́ННАЯ СТАЛЬ, общее название сталей (см. СТАЛЬ) , предназначенных для изготовления строительных конструкций и деталей машин или механизмов.
Углеродистые стали относятся к числу самых распространенных конструкционных материалов. Достоинствами сталей этого класса являются удовлетворительные механические свойства в сочетании с технологичностью обработки и низкой стоимостью.
Выпускают углеродистые конструкционные стали трех групп: сталь обыкновенного качества, качественную сталь (общего назначения) и сталь специального назначения (котельную, мостовую, судостроительную и т. д.).
Сталь углеродистая обыкновенного качества - сплав железа с углеродом, характеризуется наличием нерегламентированных примесей, неметаллических включений, газов. В ее составе также присутствуют в небольшом количестве кремний, марганец, фосфор и сера, примеси, каждая из которых оказывает определенное влияние на механические свойства сталей. В сталях обыкновенного качества, применяемых в строительстве, содержание углерода составляет 0,06-0,62 %. Стали с низким содержанием углерода характеризуются высокой пластичностью и ударной вязкостью. Повышенное содержание углерода придает стали хрупкость и твердость.
Конструкционные качественные углеродистые стали получают при более строгом соблюдении технологии выплавки, и содержания в них вредных примесей (серы и фосфора) не должно превышать 0,03% для каждой из примесей. Стали этой группы применяют в машиностроении и приборостроении для изготовления методом штамповки деталей кузовов автомобилей, корпусов, кожухов, сварных конструкций, резервуаров, и т.д. Применение специальных методов обработки (закалки (см. ЗАКАЛКА) , нормализации (см. НОРМАЛИЗАЦИЯ) ) позволяет использовать углеродистые качественные стали для изготовления деталей, испытывающих циклические нагрузки. Стали с повышенным содержанием марганца применяют в качестве рессорно-пружинных изделий, а после горячей прокатки или термической обработки используют для изготовления сварных и клепаных конструкций строительных форм, конструкций мостов. Марганцовистую сталь применяют для изготовления магистральных нефтепроводов.
Основные недостатки углеродистых сталей - высокая критическая скорость закалки, небольшая прокаливаемость, невысокая стойкость к отпуску. Низколегированные стали после прокатки значительно превосходят по техническим характеристикам углеродистые стали, они обладают малой склонностью к термическому старению, хорошо свариваются.
Машиностроительные цементируемые легированные стали содержат 0,1-0,3% углерода и 0,2-4,4% легирующих элементов. В конструкционные легированные стали для улучшения свойств вводят Cr, Ni, W, Mo, V, B и другие примеси, а также Mn и Si в количествах, превышающих их обычное содержание в углеродистых сталях.
Большинство конструкционных легированных сталей является среднеуглеродистыми (0,25-0,45% углерода). Используют их после улучшения свойств путем закалки и отпуска, поэтому называют улучшенными. Наиболее распространенные среднеуглеродистые улучшенные стали - хромистые, марганцевые, кремнистые, хромоникелевые, хромокремнистые, хромомарганцевые, хромомарганцевокремистые. Эти стали используют в производстве нагруженных и сильно нагруженных деталей машин.
Конструкционные легированные стали по сравнению с углеродистыми обладают более высокими вязкостно-прочностными свойствами. В этих сталях (кроме марганцевых) наблюдается мелкозернистая структура, они глубже прокаливаются, закаливаются в масле или на воздухе, поэтому закалочные напряжения в них меньше. При отпуске таких сталей требуется более высокая температура и более длительное время выдержки, поэтому в них полнее снимаются закалочные напряжения и вязкость оказывается выше.
Стали специального назначения предназначены для мостостроения, к ним относятся рельсовая, осевая, бандажная и колесная стали.

Углеродистые конструкционные стали можно с полным основанием назвать универсальным материалом, который успешно используется не только для производства деталей различных механизмов и машин, но и для изготовления элементов строительных конструкций. Возможность такого широкого использования этого материала обеспечивается целым набором качественных характеристик, которыми он обладает.

Что собой представляет конструкционная сталь

К данной категории относятся , которые должны обладать целым набором технологических характеристик, определяющих эффективную и длительную эксплуатацию изделий из них. Это возможно благодаря тому, что специалисты тщательно подбирают химический состав сплавов, постоянно совершенствуют методы упрочнения их поверхностного слоя, используют различные технологии термообработки, а также металлургические методы, позволяющие значительно повысить качество готового металла.

По назначению конструкционные стали делятся на два типа:

  • сплавы для производства продукции в машиностроительной сфере;
  • строительные конструкционные стали, которые также называют арматурными (они отличаются в том числе хорошей свариваемостью).

Углеродистые стали, которые называют конструкционными, могут быть общего или специального назначения. В их химическом составе, кроме полезных добавок, содержатся и вредные примеси, наиболее значимыми из которых являются сера и фосфор. Повышенное содержание данных элементов в составе стали делает изделия из нее очень хрупкими, а также значительно ухудшает их свариваемость.


Именно из-за серьезного влияния таких вредных примесей, как сера и фосфор, на характеристики конструкционных углеродистых сталей в зависимости от количественного содержания данных элементов такие сплавы подразделяются на стали обыкновенного качества, качественные, высококачественные и особовысококачественные.

В конструкционных углеродистых сталях данных категорий сера и фосфор содержатся в следующих количествах:

  • в сплавах обыкновенного качества (их можно отличить по маркировке «Ст») – не более 0,05%;
  • качественных (обозначаются как «Сталь») – не более 0,035%;
  • высококачественных (маркируются буквой «А») – не более 0,025%;
  • отличающихся особо высоким качеством (маркировка – буква «Ш») – не более 0,015%.

Углеродистые стали, относящиеся к конструкционным, классифицируются и по другим признакам, о которых будет сказано ниже.

Конструкционные стали в машиностроительной отрасли

Особенности химического состава позволяют выделить в конструкционных сталях, используемых для производства машиностроительной продукции, две большие группы:

  • мало- и среднеуглеродистые;
  • низко- и среднелегированные.


Углеродистые стали, используемые для производства различной продукции в машиностроительной отрасли, должны соответствовать целому ряду качественных и механических характеристик, к самым значимым из которых относятся:

  • ударная вязкость;
  • пластичность;
  • прочность.

Структура большей части конструкционных углеродистых сталей, используемых для производства машиностроительной продукции, относится к доэвтектоидному перлитному типу. Наиболее популярными являются 30Х2ГСН2ВМ, 30ХГСН2А, 40ХН2СМА, 25Х2ГНТРА и др. Чтобы увеличить вязкость углеродистых сплавов данного типа, в их состав вводят молибден и никель.


Сталь марки 25Х2ГНТА используется для изготовления болтов, балок и сосудов

На различные типы машиностроительные конструкционные стали подразделяют еще и в зависимости от того, подвергнуты ли упрочнению изделия, которые из них изготовлены. Так, различают изделия:

  • не подвергавшиеся упрочнению;
  • у которых упрочнению подвергнут только поверхностный слой;
  • у которых упрочнению подвергнут весь объем металла.

Отдельные марки машиностроительных конструкционных сплавов (08кп, 15кп, Ст3 и др.), из которых изготавливается преимущественно листовой металл, не подвергаются никакой термической обработке. Поскольку такой листовой металл используется для производства различных изделий методом деформирования в холодном состоянии, к его пластичности предъявляются повышенные требования. Такую пластичность обеспечивает минимальное количество кремния и углерода. Кроме способности хорошо деформироваться в холодном состоянии, стали данных марок характеризуются и отличной свариваемостью.

Конструкционные стальные сплавы, относящиеся к категории качественных, в обязательном порядке подвергаются термической обработке:

  • закалке поверхностного слоя, после которой может быть проведен отпуск металла;
  • закалке, выполняемой по стандартной технологии, после которой в обязательном порядке проводится процедура отпуска (сочетание данных типов термообработки металла дает хорошую свариваемость изделий из него);
  • нормализации металла.

Марки и характеристики машиностроительных конструкционных сплавов

Машиностроительные стали специального назначения могут иметь никелевую или железоникелевую основу. Кроме того, их подразделяют на следующие категории:

  • используемые для производства изделий методом литья;
  • так называемые автоматные;
  • отличающиеся повышенной износостойкостью;
  • с повышенной коррозионной устойчивостью;
  • шарикоподшипниковые;
  • пружинные;
  • отличающиеся повышенной жаростойкостью;
  • криогенные, не теряющие своих качественных характеристик при воздействии низких температур;
  • жаропрочные.


В химическом составе которых содержится незначительное количество кремния, могут успешно эксплуатироваться при температурах, достигающих 5500 Цельсия. Такие углеродистые стали, кроме своей жаростойкости, отличаются целым рядом значимых характеристик: они успешно эксплуатируются в окислительных и науглероживающих средах, не подвергаются газовой коррозии. Есть у них и серьезный недостаток, проявляющийся в том, что под воздействием значительных нагрузок они начинают проявлять ползучесть.

К наиболее популярным маркам таких сталей относятся 12Х17, 15Х28, 15Х6СМ, 20Х20Н14С2 и др. Они используются преимущественно для производства:

  • емкостей, в которых выполняется ;
  • деталей двигателей поршневого типа;
  • трубных изделий различного назначения.


К группе криогенных сплавов, которые отличаются высокой вязкостью и пластичностью, могут относиться как низкоуглеродистые, так и . Что характерно, ползучесть таких сталей повышается не только при понижении температуры их эксплуатации, но и при выполнении термической обработки, которая заключается в нормализации и последующем отпуске. Маркировка конструкционных сплавов данного типа регламентируется требованиями соответствующего ГОСТа (5632).

Конструкционные углеродистые стали, относящиеся к категории жаропрочных, обладают повышенной ползучестью. Их отличает и такое качество, как высокая сопротивляемость химической коррозии. Эти углеродистые стали оптимально подходят для производства труб, деталей газовых и паровых турбин, работающих при температурах в интервале 400–6500 Цельсия. Наиболее востребованными марками являются 15ХМ, 15Х5М, 12Х18Н9Т, ХН70Ю и др.


Конструкционные углеродистые стали, относящиеся к категории коррозионностойких, отличаются тем, что в их составе содержится более 12,5% хрома. Именно данный элемент дает возможность успешно использовать их для производства изделий, которые испытывают воздействие агрессивных сред (трубы различного назначения, карбюраторные валы, лопатки паровых турбин и др.). Такие стали могут быть нескольких типов:

  • с мартенситной структурой (30Х13, 12Х13, 20Х17Н2, 95Х18);
  • с мартенситно-стареющей (09Х15Н8Ю, 10Х17Н13М3Т);
  • с аустенитной и ферритной (12Х18Н10Т, 15Х28 и др.).

Чтобы изделия из конструкционных углеродистых сталей всех указанных выше типов хорошо сваривались, их необходимо подвергнуть отпуску. Примечательно, что, несмотря на значительные различия в своих качественных характеристиках, жаропрочные, жаростойкие и криогенные стали принадлежат к коррозионностойким сплавам.

Особенности других типов конструкционных сталей

Конструкционные сплавы, относящиеся к категории износостойких, содержащие в своем составе значительное количество легирующих добавок, могут быть низко- и высокоуглеродистыми. Из таких сталей, отлично противостоящих не только механическому изнашиванию, но и кавитационной коррозии, производят элементы дробильного оборудования, траки, лопасти насосного оборудования и др. Наиболее популярными марками этих сплавов являются ОХ14АГ12, ОХ14АГ12М, 12Х18Н9Т, Г13.

Углеродистые стали, которые относятся к категории автоматных (А40Г, АЦ40Г2, АЦ45Х и др.), включают различные элементы: 0,6–1,5% марганца, 0,05–0,16% фосфора, 0,05–0,3% серы. Углерода в таких сплавах содержится до 0,45%. Значительно улучшить их качественные характеристики позволяет добавление таких элементов, как селен, свинец и кальций. Из этих конструкционных углеродистых сталей, не отличающихся высокой прочностью, изготавливают детали для автопрома: болты, шпильки, шайбы и др.

Пружинистые стали (50ХФА, 55С2, 60С2ХФА, 65ГЮ, 70С2ХА и др.) в полном соответствии со своим названием отличаются хорошей вязкостью и пластичностью, также их характеризуют высокая прочность и упругость. Сюда относятся как низколегированные, так и среднеуглеродистые сплавы, в которых содержится 0,6–0,8% углерода. При их сваривании могут образовываться трещины. Такие стали используются для производства пружин и рессор различного назначения.

К категории улучшаемых относят конструкционные стали, внутреннюю структуру которых составляет мартенсит в форме мелких игл. В плотной структуре таких углеродистых сплавов отсутствуют неметаллические включения, а также карбидная ликвация и сетка. Главными достоинствами этих низколегированных и (содержание углерода – до 1,05%) являются повышенная твердость и износостойкость. Отличительной особенностью маркировки таких сплавов является то, что она всегда начинается с литеры «Ш» (ШХ4, ШХ15Ш, ШХ15СГ и др.).


Сталь марки ШХ15 применяется для производства изделий. от которых требуется износостойкость, высокая твердость и контактная прочность

Конструкционные стали в строительстве

Конструкционные углеродистые стали, используемые в строительстве, отличаются небольшим объемом легирующих элементов (хрома, марганца и кремния), а также содержанием углерода в пределах 0,1–0,2%. Такие стали, кроме хорошей свариваемости, наделены следующими характеристиками, которые особенно полезны при изготовлении строительных конструкций:

  • хорошей ковкостью и жидкотекучестью;
  • высокой твердостью и ударной вязкостью;
  • оптимальными параметрами относительного удлинения и прочности.


Изготовление изделий, используемых в строительной сфере, не из углеродистых, а из позволяет значительно сэкономить на используемом сырье (до 30%). Легирование таких сталей не только улучшает их закаливаемость, но и повышает предел их текучести.

Наиболее популярными марками рассматриваемых сталей, которые поставляются в виде сортового проката, листов, полос и прутков, являются:

  • 14Г2;
  • 15ХСНД;
  • 10Г2С1;
  • 18Г2;
  • 18Г2С;
  • 25Г2С;
  • 35ГС.


Сталь, применяемая для изготовления деталей машин , строительных конструкций и других сооружений, должна обладать высокими механическими свойствами. При этом сталь должна обладать высоким комплексом механических свойств, а не высоким значением какого-либо одного свойства. Материал, идущий на изготовление деталей, подвергающихся большим нагрузкам, должен хорошо сопротивляться таким нагрузкам и наряду с высокой прочностью обладать вязкостью, чтобы сопротивляться динамическим и сопротивляться динамическим и ударным воздействиям. Другими словами, материал должен обладать прочностью и надежностью.

В деталях, испытывающих знакопеременные нагрузки, металл должен обладать высоким сопротивлением усталости, а трущиеся детали -сопротивлением износу. Во многих случаях требуется хорошее сопротивление коррозии, ползучести и другим постоянным воздействиям. Это значит, что детали должны быть долговечными. Таким образом, детали машин должны быть изготовлены из прочного, надежного и долговечного материала.

Механические свойства стали зависят от ее структуры и состава. Совместное воздействие термической обработки и легирования является эффективным способом повышения механических характеристик стали. Возможными способами улучшения (повышения) механических характеристик стали являются: увеличение содержания углерода; легирование:, диспергирование структурных составляющих (путем понижения температуры превращения аустенита в сочетании с отпуском); измельчение зерна:, наклеп. Однако всякое упрочнение, проведенное указанными способами (кроме измельчения зерна и легирования никелем), снижает вязкость (повышает порог хладноломкости и уменьшает работу распространения трещины).

Поэтому при разработке составов конструкционных сталей и режимов их термической обработки нужно рассматривать такие способы, при которых пластические и вязкие свойства уменьшаются в минимальной степени.

Простое увеличение углерода при феррито-перлитной структуре (нормализованное состояние) приводит к повышению прочности и порога хладноломкости. Максимальная прочность при такой структуре соответствует содержанию углерода примерно 1% С и достигает всего лишь 100 кгс/мм 2 , тогда как. порог хладноломкости лежит ниже 0°С лишь при содержании углерода не более 0,4%.

Таким образом, предельное содержание углерода в термически не упрочненной стали с феррито-перлитной структурой составляет 0,4%. При этом сталь будет иметь бв =60 кгс/мм 2 .

Если предъявить требования свариваемости , то содержание углерода должно быть снижено во избежание образования трещин в сварном шве и его охрупчивания; прочность при этом снизится до 35 кгс/мм 2 .

Получение дисперсных структур в результате переохлаждения аустенита ведет к непрерывному повышению твердости и прочности : максимальную твердость (прочность) имеет мартенситная структура. При 0,4% С мартенситная структура имеет твердость около HRC 60 (НВ 650), что соответствует прочности порядка. 20-40 кгс/мм 2 . Однако вязкость в этом случае недопустимо низкая, и должна быть повышена отпуском, правда, за счет снижения прочности.

Двойная обработка, при которой окончательная структура формируется не из аустенита, а из мартенсита, т.е. применение закалки с последующим отпуском позволяет широко изменять прочностные свойства от максимальных, соответствующих закаленному состоянию до минимальных, соответствующих отожженному, и важно, что при этом пластические и вязкие свойства оказывающей более высокие, чем при одинарной обработке (продукты распада аустенита).

Такое повышение качества стали в результате двойной термической обработки - закалки и высокого отпуска - называется термическим улучшением).

Оптимальные механические свойства достигаются в результате улучшения (или изотермической закалки) , для чего аустенит должен быть при закалке переохлажден до температур образования мартенсита. В углеродистых сталях при применяемых на практике интенсивных закалочных средах (вода) сквозную закалку удается получить в сечениях до -10-15 мм.

Увеличить прокаливаемость термическими средствами (интенсификация охлаждения, выращивания зерна) нецелесообразно, так как возникает опасность получения закалочных дефектов и ухудшения вязких свойств.

Практически остается один способ углубления прокаливаемости -легирование. Было показано, что введение легирующих элементов приведет вначале к улучшению механических свойств (например, порога, хладноломкости) пока при данных условиях (размер деталей, условия охлаждения) не будет достигнута сквозная прокаливаемость, после чего дальнейшее увеличение содержания легирующего элемента приводит уже к ухудшению свойств. Режим термической обработки конструкционных сталей определяется главным образом содержанием углерода.

Рассмотрим применяемые на практике типичные режимы термической обработки для низкоуглеродистой (0,10-0,25% С) исреднеуглеродистой (0,30-0,45% С) сталей. Конструкционные стали подвергают двойной упрочняющей термической обработке - закалке + отпуску, причем среднеуглеродистые -обычно высокому отпуску (улучшению), низкоуглеродистые – низкому.

Режим закалки определяется положением критических точек и способностью аустенита к переохлаждению.

Нагрев под закалку проводят, как правило, до температур, незначительно превышающей (на 30-50°С) точку Асз.У большинства марок конструкционных низкоуглеродистых сталей эта температура находится около 900°С и у среднеуглеродистых - около 850°С. Низколегированные стали, как и углеродистые, следует закаливать в воде (и лишь при малых размерах - в масле), так как малая устойчивость переохлажденного аустенита в районе перлитного распада (около 600°С) делает необходимым быстрое охлаждение при закалке.

Увеличение содержания легирующих элементов приводит к увеличению устойчивости переохлажденного аустенита. В конструкционных сталях обычного состава содержание легирующих элементов таково, что становится возможной закалка в масле. В некоторых сталях с несколькими легирующими элементами (например, в хромовольфрамовых или хромоникельмолибденовых, сталях) перлитное превращение аустенита настолько задерживается, что охлаждением деталей больших размеров на спокойном воздухе достигается переохлаждение аустенита до температур мартенситного превращения. Рассматривая условия, которые необходимо создать для охлаждения при закалке легированных конструкционных сталей, мы должны вспомнить еще об одной особенности кинетики распада аустенита сталей, легированных карбидообразующими элементами. В этих сталях (низкоуглеродистых) скорость бейнитного превращения при 300 - 400°С оказывается существенно более высокой, чем скорость перлитного распада 500-600°С). Поэтому при закалке следует ускорять охлаждение в нижнем районе температур (при 300-400°С), чтобы избежать бейнитного превращения.

В виде общего вывода важно заметить, что у легированньк сталей мартенситная структура может быть достигнута более медленным охлаждением, чем у углеродистых; более медленное охлаждение создает меньшие внутренние напряжения, что является фактором, повышающим конструктивную прочность.

Закалка стали на мартенсит - это первый этап термической обработки конструкционной стали. Низкая пластичность, значительные внутренние напряжения не допускают применения конструкционной стали только в закаленном состоянии. Необходим отпуск, повышающий пластичность и вязкость и уменьшающий внутренние напряжения. Отпуск - завершающая операция термической обработки конструкционной стали, окончательно формирующая ее свойства.

В низкоуглеродистой стали после закалки получается достаточно пластичный мартенсит.

Отпуск при 150°С снимает (конечно, только частично) внутренние напряжения и несколько повышает пластичность. В лучших сортах низкоуглеродистых легированных сталей при такой термической обработке (закалка + отпуск при 150°С) достигается высокий комплекс механических свойств (до 130-140 кгс/мм 2 при =50-60%). Структура после такой обработки состоит из отпущенного малоуглеродистого мартенсита.

Для среднеуглеродистых конструкционных сталей, у которых после закалки получается мартенсит с большим содержанием углерода, такой отпуск недостаточен, если стремиться получить высокую вязкость.

При низком отпуске прочность будет повышенной (σ в =160-170 кгс/мм 2 , а пластичность и вязкость - низкими. Поэтому для этих сталей необходим более высокий отпуск, который обычно проводят при 550-600°С. При этой температуре происходит полный распад мартенсита с образованием зернистой высокодисперсной феррито-карбидной смеси - сорбита. Механические свойства при этом будут примерно такими же, как и при низкотемпературном отпуске малоуглеродистых сталей т.е.σ в =120-130 кгс/мм 2 , σ = 50-60.

Типичным режимом термической обработки для получения лучшего комплекса механических свойств являются: для малоуглеродистых легированных сталей - закалка с 900°С в масле с отпуском при 150° (структура отпущенного мартенсита ); для среднеуглеродистых легированных сталей - закалка с 850°С в масле с отпуском при 550-650°С (структура сорбита ). В обоих случаях механические свойства, получаются почти одинаковые. Наиболее высокую прочность получают путем ТМО. Технологическое осуществление ТМО, однако, достаточно сложно.

Влияние температуры отпуска и скорости охлаждения после отпуска на ударную вязкость легированной конструкционной стали. Для случая медленного охлаждения после отпуска кривая ударной вязкости имеет два минимума - для отпуска, при 300°С и при 550°С. Охрупчивание стали при некоторых условиях отпуска, называется отпускной хрупкостью. Понижение вязкости при этом вызвано повышением температуры перехода в хладноломкое состояние. Различаются два рода отпускной хрупкости.

Отпускная хрупкость 1 рода проявляется при отпуске около 300°С у всех сталей, независимо от их состава и скорости охлаждения после отпуска.

Отпускная хрупкости II рода обнаруживается после отпуска, выше 500°С. Характерная особенность хрупкости этого вида заключается в том, что она проявляется в результате медленного охлаждения после отпуска: при быстром охлаждении вязкость не уменьшается, а монотонно возрастает с повышением температуры отпуска Однако отпускная хрупкость П рода снова может быть вызвана новым высоким отпуском с последующим замедленным охлаждением.

Цементуемые (низкоуглеродистые) стали. Рассмотрим некоторые наиболее распространенные низкоуглеродистые стали, применяемые для изготовления цеметуемых деталей. Как уже указывалось, для этой цели применяют стали с низким содержанием углерода (0,1-0,25%) с тем, чтобы после цементации, закалки и низкого отпуска получить твердый поверхностный слой и вязкую сердцевину. Твердость поверхности после такой обработки будет около HRС 60, а сердцевины - порядка HRC 15-30.

В деталях из углеродистой стали вследствие ее слабой прокаливаемости высокую твердость получает лишь поверхностный цементованный слой, а сердцевина не упрочняется.

В легированных же сталях упрочнение сердцевины при термической обработке (закалка +низкий отпуск) будет тем более значительным; чем больше углерода и легирующих элементов они содержат.

Цементуемые стали следует разделять на три группы:

углеродистые стали с не упрочняемой сердцевиной,

низколегированные стали со слабо упрочняемой сердцевиной,

относительно высоколегированные стали с сердцевиной, сильно упрочняемой при термической обработке.

Стали последней группы называют иногда высокопрочными цементуемыми сталями. К ним следует также отнести и стали со сравнительно невысоким содержанием легирующих элементов, но с повышенным содержанием углерода (0,25-0,30%).

Улучшаемые (среднеуглеродистые) стали. Улучшаемые стали содержат 0,3-0,4% С и разное количество легирующих элементов (хром, никель, молибден, вольфрам, марганец, кремний) в сумме не более 3-5%, и часто около 0,1% измельчителей зерна (ванадий, титан, ниобий, цирконий). Обычная термическая обработка таких сталей закалка, в масле и высокий отпуск (660-650°). Чем больше в стали легирующих элементов, тем больше ее прокаливаемость. Поскольку механические свойства стали разных марок после указанной термической обработки в случае сквозной прокаливаемости близки, то не механические свойства, а прокаливаемость определяет выбор стали для той или иной детали.

Чем больше сечение детали, тем более легированную сталь следует выбирать. Во избежание развития отпускной хрупкости, что особенно опасно для крупных деталей, которые невозможны быстро охлаждать при отпуске, следует использовать стали, содержащие молибден (0,15-0,30%).

Сложные по конфигурации детали, особенно если они подвергаются ударным воздействиям, желательно изготавливать из сталей, содержащих никель. Интенсивность падения свойств при увеличении диаметра термически обрабатываемой заготовки тем меньше, чем более легирована сталь.

Строительная сталь. Строительная сталь предназначается для изготовления строительных конструкций- мостов, газо- и нефтепроводов, ферм, котлов и т.д.. Все строительные стали как правило, являются сварными, и свариваемость- одно из основных свойств строительной стали. Поэтому строительная сталь-это низкоуглеродистая сталь, с С<0,22-0,25 %. Повышение прочности достигается легированием обычно дешевыми элементами марганцем и кремнием. В этом случае и при низком содержании углерода предел текучести возрастает до 40-45 кгс/ мм 2 (предел прочности до 50-60 кгс/ мм 2), а при использовании термической обработки и выше. Простые углеродистые строительные стали-Ст1,Ст2 и СтЗ. Сталь 18Г2АФ имеет феррито-перлитную структуру, но с сильно измельченным зерном благодаря присутствию нитридов ванадия. Измельчение зерна обеспечивает повышение предела текучести примерно на 10кгс/ мм 2 . Сталь Фортивелл имеет состав: 0.2% С; 0,5% Мо; 0,003% В. Легирование молибденом и бором, замедляющими распад аустенита, приводит к получению бейнитной структуры при охлаждении на воздухе. При содержании 0,2% С бейнитная структура имеет предел текучести 45 кгс/ мм 2 при хорошей пластичности.

Арматурная сталь. Для армирования железобетонных конструкций применяют прутки (гладкие и периодического профиля) и проволоку.

В предварительно напряженной железобетонной конструкции металл испытывает значительные напряжения, и поэтому в таких конструкциях применяют высокопрочные стальные стержни или высокопрочную проволоку.

В не напряженных конструкциях применяют стали обыкновенного качества, так как сталь не испытывает больших напряжений (СтЗ, Ст5),а в предварительно напряженных конструкциях-среднеуглеродистые и высокоуглеродистые стали в горячекатанном состоянии, а также упрочненные термической обработкой. Арматурная сталь делится на классы по прочности. Арматурная сталь классов A-I, А-П и A-III применяют для ненапряженных конструкций, а арматурную сталь -более высоких классов- для предварительно напряженных конструкций. Свойства, соответствующие классу A-IV, могут быть получены в горячекатанном состоянии в легированных сталях марок 20ХГЦ или 80С или в простой углеродистой стали марки Ст5 после упрочняющей термической обработки (закалка в воде, отпуск при 400°С). Сталь 23Х2Г2Т после горячей прокатки и низкотемпературного отпуска (300°С), применяемого главным образом для удаления из металла водорода, получает свойства класса A-V. Арматуру. более высоких классов (А-VI- A-VIII) изготавливают только с применением упрочняющей термической обработки.

Для работы при низких температурах лучше применять стали с более низким содержанием углерода или стали после термической обработки.

Пружинная сталь. Работа пружин, рессор и тому подобных деталей характеризуется тем, что в них используют только упругие свойства стали. Большая суммарная величина упругой деформации пружины (рессоры и т.д.) определяется ее конструкцией- числом и диаметром витков, длинной пружины. Главное требование состоит в том, чтобы сталь имела высокий предел упругости (текучести). Это достигается закалкой с последующим отпуском при температуре в районе 300-400°С. При такой температуре отпуска предел упругости (текучести) получает наиболее высокое значение, а то, что эта температура лежит в интервале развития отпускной хрупкости I рода, в силу содержания углерода как правило, все же более низким, чем у инструментальных. Сталь 23Х2Г2Т после горячей прокатки и низкотемпературного отпуска 300°С(применяемого главным образом для удаления из металла водорода сталей)имеет приблизительно 0,5-07%С, часто с добавками марганца и кремния.Для особо ответственных пружин применяют сталь 50ХФ, содержащую хром и ванадий и обладающую наиболее высокими упругими свойствами.

Термическая обработка пружин и рессор из легированных сталей заключается в закалке от 800-850° (в зависимости от марки стали) в масле или в воде с последующим отпуском в районе 400-500°С на твердость HRC 35-45. Это соответствует б в =130-160 кгс/мм 2 .

Шарикоподшипниковая сталь. Шарикоподшипниковая сталь прежде всего должна обладать высокой твердостью, поэтому применяют высокоуглеродистые стали типа инструментальной (иногда низкоуглеродистые в цементованном состоянии). Чтобы шарикоподшипниковая сталь легко принимала закалку (т.е. имела низкую критическую скорость закалки) и в качестве закалочной среды для нее можно было бы применять масло, сталь легируют (обычно хромом). Обозначение марки.например ШХ 15 надо расшифровывать так: шарикоподшипниковая хромистая; цифра показывает примерное содержание хрома в десятых долях процента. Хром, как указывалось, вводят для обеспечения необходимой прокаливаемости. Следовательно, чем меньше размер закаливаемой детали подшипника, тем меньше может быть содержание хрома в стали.

Рекомендуется шарики и ролики диаметром до 13,5 и 10 мм изготавливать из стали ШХ9, шарики диаметром 13,5 и 22,5 мм и ролики диаметром 10-15 мм- из стали ШХ12 и, наконец, шарики диаметром 22,5 мм и ролики диаметром 15-30 мм- из стали ШХ15. Из этой же стали следует изготавливать кольца всех размеров за исключением очень крупных; ролики диаметром свыше 30 мм и кольца с толщенной стенки свыше 15 мм- из стали марки ШХ15СГ, в которую, кроме хрома, вводят легирующие элементы- кремний и марганец, увеличивающие прокаливаемость.

Термическая обработка деталей шарикоподшипника (шарики, ролики, кольца) состоит из двух основных операций закалки и отпуска. Закалку проводят в масле, температура нагрева 830-840°С с последующим отпуском при 150-160°С в течении 1-2 ч, что обеспечивает получение твердости не ниже НRС 62. Структура должна представлять собой отпущенный очень мелко игольчатый мартенсит с равномерно распределенными избыточными карбидами.

Дефекты легированных сталей. Высокие механические свойства легированных сталей обеспечили им преимущественное применение по сравнению с углеродистыми во многих отраслях специального машиностроения (авиации, автомобилестроении и т.д.). Вместе с тем в легированных сталях чаще появляются различные дефекты, встречающихся, но реже в углеродистых сталях. Часто при самом строгом соблюдении правильно установленных технологических режимов эти дефекты не поддаются полному устранению. Важнейшие из них: отпускная хрупкость, дендритная ликвация и флокены (явление отпускной хрупкости).

Дендритная ликвация. Появление дендритной ликвации обусловлено неравновесной кристаллизацией сплавов. После прокатки или ковки получаются волокна, вытянутые вдоль направления деформации.

Для уменьшения дендритной ликвации прибегают к диффузионному отжигу слитков перед прокаткой, который состоит в длительном нагреве стали при весьма высоких температурах (1000-1200°С).

Флокены. Флокены представляют собой в изломе пятна (хлопья),а в поперечном микрошлифе - трещины. Естественно, что наличие трещин вызывает снижение механических свойств. Трещины - флокены тем более опасны, чем более высокую прочность имеет сталь. Флокены можно устранить последующей ковкой (прокаткой) на меньший размер, так как при этом трещины (флокены) завариваются. Флокены редко обнаруживаются в малых сечениях (диаметром менее 25-30 мм).

Конструкционная сталь - легированная или углеродистая сталь, предназначенная для изготовления различных деталей, механизмов и конструкций в машиностроении и строительстве и обладающая определенными механическими, физическими и химическими свойствами. Например, ШХ15 - специализированный материал для подшипников.

По форме, размерам и предельным отклонениям металлопродукция соответствует требованиям:

  • прокат круглый (круг сталь 40х) - ГОСТ 2590-88, ГОСТ 7417;
  • прокат квадратный - ГОСТ 2591-88, ГОСТ 8559;
  • прокат шестигранный - ГОСТ 2879-88, ГОСТ 8560;
  • прутки кованые квадратные и круглые - ГОСТ 1113-88;
  • полосы - ГОСТ 103-76, ГОСТ 4405;
  • профили для косых шайб: ГОСТ 5157;
  • со специальной отделкой поверхности - ГОСТ 14955.

Конструкционная легированная сталь

Нормативный документ: качественная конструкционная легированная сталь изготовляется согласно ГОСТ 4543-71.

Легированная сталь - сталь, в которую в процессе легирования в определенных количествах вводят специальные элементы, обеспечивающие требуемые свойства. Такие элементы называют легирующими. Они могут повышать прочность и коррозионную стойкость стали и снижать опасность ее хрупкого разрушения.

Для легирования стали используются следующие химические элементы: марганец (Mn) - Г; кремний (Si) - С; хром (Cr) - Х; никель (Ni) - Н; медь (Cu) - Д; азот (N) - А; ванадий (V) - Ф; ниобий (Nb) - Б; вольфрам (W) - В; селен (Se) - Е; кобальт (Co) - К; бериллий (Be) - Л; молибден (Mo) - М; бор (B) - Р; титан (Ti) - Т; алюминий (Al) - Ю.

Классификация конструкционной легированной стали

По отношения общей массы легирующих элементов к массе стали:

  • сталь высоколегированная - более 10%;
  • сталь среднелегированная - более 2,5-10%;
  • сталь низколегированная - до 2,5%.

В зависимости от основных легирующих элементов:

  • хромистая;
  • марганцовистая;
  • хромомарганцовая;
  • хромокремнистая;
  • хромомолибденовая;
  • хромомолибденованадиевая;
  • хромованадиевая;
  • никельмолибденовая;
  • хромоникелевая;
  • хромоникелевая с бором;
  • хромокремнемарганцовая;
  • хромокремнемарганцовоникелевая;
  • хромомарганцовоникелевая;
  • хромомарганцовоникелевая с титаном и бором;
  • хромоникельмолибденовая;
  • хромоникельмолибденованадиевая;
  • хромоникельванадиевая;
  • хромоалюминиевая;
  • хромоалюминиевая с молибденом;
  • хромомарганцовоникелевая с молибденом;
  • хромомарганцовоникелевая с молибденом и титаном.

В зависимости от хим. состава и свойств:

  • качественная;
  • высококачественная - А;
  • особо высококачественная (сталь электрошлакового переплава) - Ш.(например ШХ15)

По видам обработки:

  • прокат горячекатаный и кованый (в том числе с обточенной или ободранной поверхностью);
  • калиброванный;
  • со специальной отделкой поверхности.

По качеству поверхности:

  • 1 группа;
  • 2 группа;
  • 3 группа.

По состоянию материала:

  • без термической обработки;
  • термически обработанный - Т;
  • нагартованный - Н.

Марки конструкционной легированной стали

Марки стали: 15Х, 20Х, 30Х, 35Х, 38ХА, 40Х, 45Х, 50Г, 12ХН, 20ХН, 40ХН, 14ХГН, 19ХГН, 20ХГНМ, 30ХМ.

  • 20Х - 15Х, 20ХН, 12ХН2, 18ХГТ;
  • 30ХГСА - 40ХФА, 35ХМ, 40ХН, 25ХГСА, 35ХГСА;
  • 40Х - 45Х, 38ХА, 40ХН, 40ХС.

Обозначение марок конструкционной легированной стали: две первые цифры указывают содержание углерода в сотых долях процента, цифры после букв указывают содержание легирующего элемента в целых единицах.

Применение конструкционной легированной стали

Марка стали Область применения
60С2(А) Рессоры из полосовой стали толщиной 3-16мм и пружинной ленты толщиной 0,08-3мм; витые пружины из проволоки диаметром 3-16мм.
70СЗА Тяжелонагруженные пружины ответственного назначения. Сталь склонна к графитизации.
50ХГ(А) Рессоры из полосовой стали толщиной 3-18мм.
50ХФА(ХГФА) Ответственные пружины и рессоры, работающие при повышенной температуре (до 300°С), или подвергаемые многократным переменным нагрузкам.
60C2XA Большие высоконагруженные пружины и рессоры ответственного назначения.
60C2H2A(C2BA) Ответственные высоконагруженные пружины и рессоры из калиброванной стали и пружинной ленты.
20Х Кулачковые муфты, втулки, шпиндели, направляющие планки, плунжеры, оправки, копиры, шлицевые валики и др.
40Х Зубчатые колеса, шпиндели и валы в подшипниках качения, червячные валы и др.
45Х, 50Х Зубчатые колеса, шпиндели, валы в подшипниках качения, червячные и шлицевые валы, и др. детали, работающие на средних скоростях при небольшом давлении.
38ХА Зубчатые колеса, работающие на средних скоростях при средних давлениях.
45Г2, 50Г2 Крупные малонагруженные детали: валы, зубчатые колеса тяжелых станков и т.п.
18ХГТ Детали, работающие на больших скоростях при высоких давлениях и нагрузках.
20ХГР Тяжелонагруженные детали, работающие при больших скоростях и нагрузках.
15ХФ Некрупные детали, подвергаемые цементации и закалке с низким отпуском.
40ХС Мелкие детали высокой прочности.
40ХФА Ответственные высокопрочные детали, подвергаемые закалке и высокому отпуску; средние и мелкие детали сложной формы, работающих в условиях износа; ответственные сварные конструкции, работающие при знакопеременных нагрузках.
35ХМ Валы, детали турбин и крепеж, работающие при повышенной температуре.

Свариваемость: cварка конструкционных легированных сталей несколько затруднена из-за склонности к закалке околошовной зоны и образованию в ней хрупких структур (требуется специальная технология сварки).

Сталь низколегированная качественная конструкционная

Нормативный документ: качественная конструкционная низколегированная сталь изготовляется согласно ГОСТ 19281-89.

Сталь Низколегированная - легированная сталь с содержанием общей массы легирующих элементов менее 2,5% от общей массы стали.

Марки стали низколегированной

Марки стали: 09Г2, 09Г2С, 0ХСНД, 17Г1С, 16Г2АФ, 10ХНДП, 15ХНДП, 0ХСНД, 15ХСНД и т.д.

Сталь низколегированная марок 10ХНДП, 15ХНДП, 0ХСНД, 15ХСНД является атмосферно коррозионно-стойкой (АКС).

Заменители некоторых марок стали:

  • 09Г2С - 09Г2, 09Г2ДТ, 09Г2Т, 10Г2С;
  • 10ХСНД - 16ГАФ.

Применение стали низколегированной

Низколегированная сталь применяется для изготовления корпусов вагонов железнодорожных, метро, трамвая, несущих конструкций локомотивов, сельскохозяйственных и других полевых машин и инженерных сооружений, работающих в условиях переменных динамических нагрузок и сезонных и суточных теплосмен.

Свариваемость: сталь низколегированная сваривается без ограничений.

Углеродистая качественная конструкционная сталь

Нормативный документ: качественная конструкционная углеродистая сталь изготовляется согласно ГОСТ 1050-88, ГОСТ 1051-73.

Углеродистая сталь - сталь, не имеющая в своем составе легирующих элементов, но содержащая углерод в различной концентрации: до 0,25% - низкоуглеродистая сталь, 0,24-0,6% среднеуглеродистая сталь, более 0,6 - высокоуглеродистая сталь.

Классификация углеродистых сталей

По качеству

  • обыкновенного качества;
  • повышенного качества;
  • качественная.

По назначению сталь обыкновенного качества:

  • А - поставляется по механическим свойствам, применяется в изделиях, подвергающихся горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства;
  • Б - поставляется по химическому составу, применяется для деталей, подвергающихся обработке, которая может изменить регламентируемые механические свойства, при этом их уровень кроме условий обработки определяется хим. составом;
  • В - поставляется по механическим свойствам и химическому составу для деталей, подвергаемых сварке.

По степени раскисления:

  • кипящая - кп;
  • полуспокойная - пс;
  • спокойная сталь без термической обработки - сп.

По химическому составу для качественной стали:

  • I - с нормальным содержанием марганца (Mn 0,80%);
  • II - с повышенным содержанием марганца (Mn 1,2%) - Г.

Марки качественной конструкционной углеродистой стали

Углеродистая сталь обыкновенного качества: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, СтЗкп, СтЗпс, СтЗсп, СтЗГпс, СтЗГсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Стбпс, Стбсп.

Углеродистая качественная сталь: 08, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 58, 60 - машинная сталь; А12, А20, А30 - автоматная сталь.

Обозначение марки стали: «Ст» - сталь, следующие за ней цифры - условный номер марки в зависимости от химического состава, затем указывается степень раскисления («кп», «пс», «сп»).

Заменители некоторых марок стали:

  • Ст20 - Ст15, 25;
  • Ст35 - Ст30, 40, 35Г;
  • Ст45 - 40Х, Ст50, 50Г2.

Применение качественной конструкционной углеродистой стали

Марка стали Область применения
08кп, 10 Детали, изготовляемые холодной штамповкой и холодной высадкой, трубки, прокладки, крепеж. Цементуемые и цианируемые детали, не требующие высокой прочности сердцевины.
15, 20 Малонагруженные детали: валики, пальцы, упоры, копиры, оси, шестерни. Тонкие детали, работающие на истирание: рычаги, крюки, траверерсы, вкладыши, болты, стяжки и др.
30, 35 Детали, испытывающие небольшие напряжения: оси, шпиндели, звездочки, тяги валы и т.п.
20к Котельная сталь.
40, 45 Детали с повышенной прочностью: коленчатые валы, шатуны, зубчатые венцы, распределительные валы, маховики, зубчатые колеса, шпильки, храповики и др.
50, 55 Зубчатые колеса, прокатные валки, штоки, бандажи, валы, малонагруженные пружины и др.
60 Детали с высокими прочностными и упругими свойствами: прокатные валки, эксцентрики, шпиндели, пружинные кольца, пружины и диски сцепления, пружины амортизаторов.
А12, А20, А30 Неответственные детали массового производства, изготавливаемые на станках-автоматах.

Свариваемость: хорошая для котельных сталей и сталей марок Ст08-Ст35; затрудненная для стали Ст45; автоматные стали не применяются для сварки.

Теплоустойчивая качественная конструкционная сталь ГОСТ 20072-74

Нормативный документ: качественная конструкционная легированная сталь теплоустойчивая изготовляется согласно ГОСТ 20072-74.

Классификация теплоустойчивой стали

По видам обработки сталь подразделяют:

  • горячекатаная;
  • кованая;
  • калиброванная;
  • калиброванная шлифованная.

По состоянию материала:

  • без термической обработки;
  • термически обработанная - Т;
  • нагартованная - Н (для калиброванной стали).

По назначению:

  • а - для горячей обработки давлением;
  • б - для холодной механической обработки (обточки, строжки, фрезерования и другой обработки по всей поверхности);
  • в - для холодного волочения (подкат).

Марки теплоустойчивой конструкционной стали

Марки стали: 12МХ, 12Х1МФ, 25Х1МФ, 25Х2М1Ф, 20Х1М1В1ТР, 20Х1М1В1БР, 20Х1МФ, 18Х3МВ, 20Х3МВФ, 15×5, 15Х5М, 15ХВФ, 12Х8ВФ.

Обозначение марок стали: наименование состоит из обозначения элементов и следующих за ними цифр, указывающих среднюю массовую долю легирующего элемента в целых единицах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед буквенным обозначением указывают среднюю или максимальную массовую долю углерода и стали в сотых долях процента. Сталь, полученную методом электрошлакового переплава, обозначают через тире в конце наименования марки буквой - Ш.

Применение теплоустойчивой конструкционной стали

Изготовление деталей, работающих в нагруженном состоянии при температуре до 6000С в течение длительного времени.

Свариваемость: ограниченно или трудносвариваемая.

Шарикоподшипниковая качественная конструкционная сталь ГОСТ 801-78

Нормативный документ: качественная конструкционная легированная сталь шарикоподшипниковая изготовляется согласно ГОСТ 801-78.

Классификация шарикоподшипниковой стали

По требованию к качеству поверхности и в зависимости от дальнейшей обработки:

  • для холодной механической обработки - ОХ;
  • для горячей обработки давлением - ОГ;
  • для холодной высадки - ХВ;
  • для холодной штамповки - ХШ.

По форме, размерам и предельным отклонениям:

  • горячекатаный круг сталь 40х - ГОСТ 2590-88;
  • горячекатаный квадрат - ГОСТ 2591-88;
  • заготовка квадратная - по действующим нормативным документам;
  • горячекатаная полоса - ГОСТ 103-76;
  • калиброванный круг квалитета h11 с дополнительными размерами - ГОСТ 7417-75;
  • круг со специальной отделкой поверхности квалитета h11 групп В и Г - ГОСТ 14955-77.

По состоянию материала:

  • без термической обработки;
  • термически обработанная.

Марки шарикоподшипниковой конструкционной стали

Марки стали: ШХ15, ШХ4, ШХ15 СГ, ШХ20 СГ.

Обозначение марок стали: Ш - подшипниковая, Х - легированная хромом, цифра - содержание хрома, СГ - легированная кремнием и марганцем. Например, сталь шарикоподшипниковая и рессорно-пружинная ШХ15.

Заменители некоторых марок стали:

  • ШХ15 - ШХ9, ШХ12, ШХ15 СГ;
  • ШХ15 СГ - ХВГ, ШХ15, ХС, ХВСГ.

Применение шарикоподшипниковой стали

Изготовление деталей, работающих под воздействием сосредоточенного и переменного напряжений, возникающих в зоне контакта шариков и роликов с беговыми дорожками колец подшипников качения. Особой популярностью пользуется ШХ15.

Свариваемость: сваривается способом КТС.

Рессорно-пружинная качественная конструкционная сталь, в т.ч. сталь ШХ15 изготавливается по ГОСТ 14959-79

Нормативный документ: качественная конструкционная рессорно-пружинная легированная или углеродистая сталь изготовляется согласно ГОСТ 14959-79.

Классификация рессорно-пружинной стали

По способу обработки проката:

  • горячекатаный и кованый;
  • калиброванный;
  • со специальной отделкой поверхности;
  • горячекатаный круг сталь 40х с обточенной или шлифованной поверхностью.

По химическому составу стали:

  • качественная;
  • высококачественная - А.

По нормируемым характеристикам и применению:

  • 1, 1А, 1Б;
  • 2, 2А, 2Б;
  • 3, 3А, 3Б, 3В, 3Г;
  • 4, 4А, 4Б.

Марки рессорно-пружинной качественной стали

Марки стали: 65, 70, 75, 85, 60Г, 65Г, 55С2,60С2, 60С2А, 70С3А, 55ХГР, 50ХФА, 60С2ХА, 60С2ХФА, 65С2ВА.

Заменители некоторых марок стали:

  • 65Г - 70, У8А, 70Г, 60С2А,9ХС,50ХФА, 60С2, 55С2;
  • 50ХФА - 60С2А, 60ХГФА, 9ХС.

Применение рессорно-пружинной стали

Работа в качестве пружин, рессор, гибких мембран, сильфонов и аналогичных деталей.

Свариваемость: рессорно-пружинная конструкционная углеродистая и конструкционная легированная сталь не применяется для сварных конструкций.

Конструкционная сталь - специально обработанный сплав железа с углеродом, который предназначен для производства несущих конструкций в строительстве и обладает особыми физическими и механическими свойствами. Она рассчитана на длительную эксплуатацию под высоким уровнем нагрузок. Существует огромное количество марок конструкционных сталей, которые определяются по нескольким ключевым показателям.

Важнейшим параметром является качество материала, которое зависит от содержания фосфора и серы в сплаве. Эти элементы приводят к повышенной ломкости структуры металла, поэтому их присутствие должно быть сведено к минимуму. Материал с содержанием данных примесей до 0,05% относится к категории обычного качества и маркируется «ст». Сплав с массовой долей серы и фтора до 0,035% считается качественным и маркируется «сталь». При содержании указанных элементов до 0,025% сталь называют высококачественной и маркируют буквой «а» в конце. А материал с количеством примесей до 0,015% относится к категории особо высокого качества, о чем будет свидетельствовать буква «ш» в конце марки.

Категории конструкционных сталей

В зависимости от назначения все конструкционные стали делятся на три категории: А, Б и В. Группа А применяется в конструкциях, составные элементы которых не подвергаются термической обработке. Это позволяет сохранить все заводские свойства металла в нетронутом виде.

Категория Б наоборот, предназначается для конструкций, к которым будет применяться горячая обработка. Эта марка имеет четко регламентированный химический состав, а ее окончательные свойства зависят от способа обработки.

Сталь группы В изготавливается специально под сварку. Ее физические и химические свойства обеспечивают максимальный уровень соединение элементов конструкции друг с другом. Данная классификация является предельно строгой, поэтому нужно использовать конкретную марку материала только для четко указанных целей. В противном случае результат может оказаться гораздо ниже желаемого уровня.

Классификация конструкционных сталей производится и по степени раскисления. Она определяется количеством кремния в сплаве. Выделяют три вида: спокойные стали (маркировка «сп») - содержание кремния не менее 0,12%; полуспокойные стали (маркировка «пс») - содержание кремния 0,07-0,12%; кипящие стали (маркировка «кп») - содержание кремния до 0,07%. Степень раскисления влияет на свариваемость материала, а также на предельно переносимые механические нагрузки. Чем больше кремния в составе сплава, тем лучше качество стали. Сварка конструкционных сталей производится при помощи стандартных аппаратов. Данный вид материала изначально предназначен для создания соединительных конструкций, поэтому достаточно легко поддается обработке.

Получение конструкционных сталей

Выплавка углеродистой конструкционной стали ничем не отличается от получения стандартного сплава. Особые свойства материал приобретает благодаря специальной обработке с соблюдением особых условий. Очень важно на этапе закалки соблюсти все технологические процедуры, так как от этого напрямую зависит качество полученного металла. Термическая обработка конструкционных сталей производится при температурах 550-680 градусов по Цельсию. Данный диапазон обеспечивает наибольшую прочность на износ.


По времени закалка длится в зависимости от размеров детали и маркировки материала. После отжига структура конструкционной стали получает перлитно-ферритную кристаллическую решетку, которая хорошо переносит механические нагрузки. В некоторых случаях в сплав добавляют специальные присадки, которые придают материалу специальные свойства. Это необходимо для тех видов стали, которым предстоит работать в неблагоприятных условиях или в агрессивных средах.

Легированные конструкционные стали используются на наиболее важных участках конструкций. Из них изготавливают сильно загруженные детали производственного оборудования, а также несущие конструкции зданий и сооружений. Для легирования используются в основном хром, никель и марганец, реже - ванадий и бор. Эти элементы позволяют сплаву успешно бороться с воздействием коррозии и без проблем работать в условиях повышенной влажности и сильных динамических нагрузок. Для качественного легирования необходимо 12-15% присадки в общей массовой доле сплава.

Низколегированные конструкционные стали встречаются чаще, так как они дешевле в производстве. Добавление небольшого количества легирующего элемента позволит с успехом эксплуатировать материл на открытом воздухе, не опасаясь за его быстрое разрушение. Он скорее всего не получит полный иммунитет к воздействию коррозии, но прослужит несколько десятилетий, прежде чем потребуется его замена.

Сферы применения

Применение конструкционных сталей достаточно широко. Как уже было отмечено, они служат для производства деталей станков и оборудования, которым предназначены высокие эксплуатационные нагрузки, а также для сбора несущих конструкций при строительстве различных объектов. Кроме того, материал используют для изготовления упорных подшипников, пружинно-рессорных механизмов, термостойких котлов и печей.


Качественные конструкционные стали служат при производстве котельного оборудования, которое постоянно подвергается высоким механическим и термическим нагрузкам. Это очень хороший материал, который пользуется спросом и среди промышленников, и среди частных лиц. Некоторые умельцы изготавливают из него разнообразные инструменты, которые обладают гораздо большим запасом прочности, чем штатная продукция. Из металла можно делать ворота или двери высокого качества, которые будут надежно оберегать жилье от незваных посетителей.

Достать материал в наше время не составит труда. Заказать сортовую конструкционную сталь можно практически на любом металлургическом комбинате. Но перед оформлением заявки стоит внимательно ознакомиться с ассортиментом продукции и расшифровать все закодированные в маркировке обозначения, чтобы сделать максимально правильный выбор.

Характеристики конструкционных сталей достаточно разнообразны и главное, что они существенно влияют на качество материала. Поэтому тщательная подготовка поможет избежать ошибки. Получить свой заказ можно будет при самостоятельном посещении завода. Если такой возможности нет, можно заказать адресную доставку в любую точку страны. Конструкционные металлы и сплавы стоят дороже стандартных материалов, но их высокие эксплуатационные параметры заслуживают такое отношение.


Close