Задачи кручения стержней являются статически неопределимыми, если крутящие моменты, возникающие в поперечных сечениях стержня, не могут быть определены с помощью одних только уравнений равновесия. Для решения таких задач необходимо также рассматривать деформированное состояние скручиваемого стержня.

В качестве примера рассмотрим закрепленный на концах стержень круглого сечения, нагруженный скручивающим моментом М, приложенным на расстоянии а от левого конца (рис. 8.15, а).

Для определения двух опорных моментов М А и М в имеем лишь одно уравнение равновесия

Для составления уравнения деформаций отбросим мысленно правую опору (рис. 8.15, б). Найдем угол закручивания (p s сечения В образованного таким образом статически определимого стержня и приравняем его к нулю:

Из этого равенства получим

Из уравнения равновесия (8.29) найдем

При известных величинах М А и М в можно определить крутящий момент М и угол закручивания ср в произвольном сечении стержня.

Соответствующие эпюры М к и (р приведены на рис. 8.15, в, г.

Кручение стержней с некруглым поперечным сечением. Задача Сен-Венана

Как показывают эксперименты, при кручении стержней некруглого поперечного сечения гипотезы, принятые в § 8.2, оказываются несправедливыми. Основным отличием является то, что поперечные сечения в таких стержнях при кручении не остаются плоскими, а искривляются (рис. 8.16). Это явление называется депланацией. При этом в зависимости от условий закрепления стержня депланация по длине стержня может быть различна. Так, например, если один торец стержня закреплен (рис. 8.16), то депланация в заделке отсутствует, а на свободном торце она наибольшая. При этом, очевидно, некоторые продольные волокна стержня удлиняются, а другие - укорачиваются. Это возможно лишь за счет появления нормальных напряжений о г, которые на первый взгляд должны отсутствовать, поскольку внутренние усилия (N, М х, М у), являющиеся равнодействующими этих напряжений, при кручении равны нулю.

Кручение стержня, при котором депланация сечения по длине стержня изменяется, называется стесненным кручением.

В этом параграфе рассмотрим такое кручение, при котором депланация по длине стержня постоянна и ее можно характеризовать величиной перемещения w = w (х, у) в осевом направлении. Такое кручение стержня называется свободным кручением. Свободное кручение имеет место, например, когда стержень постоянного по всей длине сечения нагружен по торцам двумя скручивающими моментами (рис. 8.17).

Решение задачи свободного кручения стержней некруглого поперечного сечения получено Сен-Венаном. В основу решения положены следующие допущения.

1. Перемещения ниув плоскости Оху описываются теми же соотношениями, что и при кручении стержней круглого сечения (формулы (8.22)):

2. Величина депланации пропорциональна относительному углу закручивания ф", то есть

Здесь следует отметить, что если в рассматриваемой задаче (см. рис. 8.17) считать, что сечение z = 0 не поворачивается, то углы закручивания ф изменяются по длине стержня по линейному закону (рис. 8.11) и

Из соотношений Коши (5.8) с учетом (8.30) и (8.31) найдем деформации:

С помощью закона Гука (6.12) получим

а остальные напряжения равны нулю.

Из этих соотношений видно, что в стержне возникает напряженное состояние чистого сдвига. Подставив выражения для t xz и x yz в формулу (8.8), вычислим величину крутящего момента:

Входящий в это равенство интеграл

назовем моментом инерции сечения при кручении. В случае круглого сечения, когда депланация отсутствует (|/ = 0), эта величина совпадает с полярным моментом инерции

Подставляя (8.35) в (8.34), получим

Эта формула совпадает по форме с (8.8). Отличными в этих формулах являются только геометрические характеристики / и J.

Произведение GJ K называется жесткостью стержня при свободном кручении.

Таким образом, для решения задачи о свободном кручении стержней некруглого поперечного сечения необходимо найти функцию ц/(х, у). Тогда из (8.36) с учетом (8.35) можно определить относительный угол закручивания ф", а с помощью (8.33) и (8.32) - вычислить напряжения и деформации.

Подставив выражения для напряжений t xz и % yz из (8.33) в третье уравнение равновесия Навье (4.10) при отсутствии объемных сил, получим

Отсюда следует, что функция f(x, у) должна удовлетворять уравнению Лапласа

Рассмотрим теперь граничные условия:

На боковой поверхности стержня, которая свободна от внешних нагрузок и имеет нормаль v, перпендикулярную к оси Oz, имеем

С учетом этих равенств третье граничное условие (8.39), дает

Преобразуем это условие, рассмотрев бесконечно малый элемент АВС у границы поперечного сечения (рис. 8.18). Направление касательной t примем так, как показано на этом рисунке.

Подставляя эти значения в (8.40), получим

Таким образом, задача о кручении стержня с произвольным поперечным сечением сводится к решению дифференциального уравнения (8.38) с граничным условием (8.42).

Граничное условие (8.42) имеет сложный вид и не очень удобно для решения задач. Поэтому рассмотрим другой подход, приводящий к более простому граничному условию.

Уравнению (8.37) можно удовлетворить, приняв

где Ф = Ф (х, у) называется функцией напряжений.

Из равенств (8.33) и (8.43) получим

Исключим функцию |/. Для этого продифференцируем первое равенство по у, второе - по х и вычтем из первого равенства второе:

Таким образом, функция Ф удовлетворяет уравнению Пуассона

Граничное условие (8.40) с учетом (8.41) и (8.43) принимает вид

Отсюда следует, что на границе

В случае односвязных, то есть сплошных, сечений эту постоянную можно принять равной нулю. Тогда получим, что на границе

Таким образом, задача определения напряжений в скручиваемом стержне некруглого поперечного сечения сводится к отысканию функции Ф, которая удовлетворяет уравнению Пуассона (8.44) и граничному условию (8.46).

Выразим крутящий момент М к через функцию напряжений Ф. Подставив (8.43) в (8.34), получим

Дважды интегрируя это выражение по частям и используя граничное условие (8.46), можно получить следующее равенство:

ПРИ КРУЧЕНИИ (ЗАДАЧА № 11)

Условие задачи

Стальной вал круглого поперечного сечения состоит из трех участков с различными полярными моментами инерции (рис. 3.6, а ). Концы вала жестко закреплены от поворота относительно продольной оси вала. Заданы нагрузки: пары сил и , действующие в плоскости поперечного сечения вала; отношения полярных моментов инерции участков вала и ; длины участков , , .

Требуется:

1) построить эпюру крутящих моментов;

2) подобрать размеры поперечных сечений из условия прочности;

3) построить эпюру углов закручивания.

Решение

Ввиду наличия двух жестких опорных закреплений под действием нагрузки в каждом из них возникают реактивные пары и . Составив условие равновесия вала


убеждаемся в том, что записанное уравнение не может быть решено однозначно, поскольку содержит две неизвестные величины: и . Остальные уравнения равновесия при данной нагрузке выполняются тождественно. Следовательно, задача является один раз статически неопределимой.

Для раскрытия статической неопределимости составим условие совместности деформаций. Вследствие жесткости опорных закреплений концевые сечения вала не поворачиваются. Это равносильно тому, что полный угол закручивания вала на участке А–В равен нулю: , или .

Последнее уравнение и есть условие совместности деформаций. Для его связи с уравнением равновесия запишем физические уравнения, связывающие крутящие моменты и углы закручивания (3.3) (закон Гука при кручении), для каждого участка стержня:

, , .

Подставив физические соотношения в условие совместности деформаций, находим реактивный момент , а затем из уравнения равновесия определяем . Эпюра крутящих моментов показана на рис. 3.6, б .

Для решения задачи о подборе сечения запишем формулы для определения максимальных касательных напряжений (3.5) на каждом участке вала:

; ; .

Коэффициенты и , представляющие собой отношения полярных моментов сопротивления сечений второго и третьего участков вала к полярному моменту сопротивления сечения первого участка , определим через известные параметры и .

Полярный момент инерции может быть записан двояким образом:

; ,

где , - радиусы первого и второго участков стержня. Отсюда выразим радиус через :

Тогда полярный момент сопротивления второго участка

,

то есть . Аналогично .

Теперь можно сравнить между собой максимальные касательные напряжения на отдельных участках и для наибольшего из них записать условие прочности (3.13). Из этого условия находим требуемый полярный момент сопротивления , и затем, используя формулу (3.8), радиусы вала на каждом участке.

; ; .

Для построения эпюры углов закручивания вычислим углы закручивания на каждом участке стержня по формуле (3.3). Ординаты эпюры получаются последовательным суммированием результатов для отдельных участков, начиная с одного из концов вала. Контролем правильности решения является равенство нулю угла закручивания на другом конце вала Вид эпюры углов закручивания показан на рис. 3.6, в .


Для конструкции, имеющей жесткий стержень, рациональным уравнением равновесия, в которое входит одно неизвестное усилие, является уравнение , где А – шарнир, вокруг которого поворачивается жесткий стержень.

Как видно из названия, этот способ применим к конструкциям, стержни которых выполнены из пластичного материала.

Очевидно, что связь между деформациями стержней будет такой же, как и в первой части задачи, поэтому уравнение совместности деформаций в третьей части задачи можно записать, используя ранее полученное уравнение, заменив в нем на .

При решении этой задачи студенты заочной формы обучения выполняют только расчет по предельному пластическому состоянию. Остальные студенты решают задачу № 6 в соответствии с требованием преподавателя. Пункт 2, отмеченный значком *, не является обязательным и выполняется по желанию студента.

Современные нормы строительного проектирования предусматривают более сложный подход (введение отдельных коэффициентов запаса на нагрузку, свойства материала, условия работы конструкции). С этим студент познакомится при изучении курсов металлических, железобетонных и других конструкций.

Системы, в которых количество наложенных связей больше, числа независимых уравн равновесия,называются стат неопред .По сравнению со стат определимыми системами, в ста неопрд. системах имеются дополнительные лишние связи.Термин “лишние связи” является условным. Эти связи являют­ся лишними с точки зрения расчетных предпосылок. В действи­тельности эти связи создают дополнитрезервы для конст­рукций, как в плане обеспечения её жесткости, так и прочности.На рис. 2.5, а изображен кронштейн, сост из 2 стерж­ней, шарнирно скрепленных между собой. В связи с тем, что на конструкцию действует лишь вертик усилие Р , а система яв­ляется плоской получается, что усилия в стержнях легко определ. из условий равновесия узла А , т.е.x = 0, y = 0. Раскрывая эти уравнения, получаем замкнутую систему лин уравнений относительно неизвестных усилий N 1 и N 2 в кото­рой количество уравнений равно количеству неизвестных:N 1  N 2 sin  = 0;N 2 cos   Р = 0.

Если конструкцию крон­штейна усложнить, добавив еще один стержень (рис. 2.5, б ), то усилия в стержнях N 1 , N 2 и N 3 прежним способом определить уже не удастся, т.к. при тех же двух уравнениях равновесия (2.16) имеются 3 неиз­вестных усилия в стержнях. Получсис­тема один раз ста неопределима. Разность между числом неизвестных усилий и количеством независимых (значащих) урав­нений равновесия, связывающих эти усилия, называется сте­пенью ст неопределрассматриваемой системы.В общем случае под n раз статически неопределимой системой понимается система, в которой число неизвестных внешних опорных реакций и внутренних усилий превышает число не­зависимых и значащих уравнений равновесия на n единиц. Решение статически неопределимых задач методом сил проводится в такой последовательности.1Устанавливае степень ст неопред системы как разность между числом искомых неизв усилий и числом независ уравн равновесия. Учитывается, что простой шарнир, соединяющ 2 стержня системы, уменьшает степень ст неопределим на 1, т к снимает одну связь, препятств повороту одной части системы относительно другой. Простой шарнир позволяет добавить к уравн. равн. всей системы уравнение равновесия присоединенной этим шарниром части системы.2. Из заданной ст неопр. сист выделяется основная система путем удаления лишних связей и внешней нагрузки.3. Изображается соответствующая выбранной основной эквивалентная система, в которой взамен снятых лишних связей и в их направлении приложены силы X i , если связи препятствовали линейному перемещению, и пары X k , если они исключали повороты сечений.4. Составляются канонические уравнения метода сил.5. Вычисляются коэффициенты канонических уравнений аналитически

В отличие от рассмотренных ранее круглых стержней, кручение стержней некруглой поперечной формы обладает особенностями. Основная из них – депланация . Это явление того, что сечения перестают быть плоскими, депланируют. Формулы, основанные на гипотезе плоских сечений, теряют силу. Возникают нормальные напряжения.

Различают свободное и стеснённое кручение. Свободным называют такое кручение, при котором депланация постоянна по длине стержня и её можно характеризовать величиной перемещения в осевом направлении. Кручение стержня, при котором депланация сечения по длине стержня изменяется, называется стеснённым кручением . В этом случае возникает особый вид внутреннего усилия – бимомент, влияющий на распределение нормальных и касательных напряжений по сечению.

Стержни с некруглым поперечным сечением могут быть различны (рис. 11.1).

Рис. 11.1. Стержни с некруглым поперечным сечением: а) толстостенные; б) тонкостенные замкнутого и открытого профиля

Толстостенными называют стержни, имеющие размеры различных элементов сечения соизмеримые с размерами самого сечения. Деформация толстостенных стержней имеет сложный характер, задачи о кручении таких стержней решаются аналитически или численно методами теории упругости.

Тонкостенными называют стержни, у которых длина контура поперечного сечения намного больше толщины сечения.

Расчёт тонкостенных стержней открытого и замкнутого профиля на стеснённое кручение изучается в теории тонкостенных стержней, разработанной проф. В.З. Власовым.

Решение задачи свободного кручения стержней некруглого поперечного сечения получено Сен-Венаном.

При кручении прямоугольного поперечного сечения наибольшее напряжение возникает посредине длинной стороны контура (рис. 11.2). Для его вычисления используют формулу (11.1).

Здесь W t =αhb 2 - момент сопротивления при кручении, α – коэффициент Сен-Венана, h и b размеры прямоугольного сечения (рис. 11.2).

Угол закручивания грузового участка длиной l c постоянным внутренним усилием находится по формуле (11.2)

Здесь I t =βhb 3 - момент инерции при кручении, β – коэффициент Сен-Венана.

Эп. τ[МПа]


Рис. 11.2. Эпюра касательных напряжений

Коэффициенты Сен-Венана α, β, γ определяются с помощью таблицы 11.1 в зависимости от отношения h/b .

Таблица 11.1

h/b
α 0,208 0,246 0,267 0,282 0,299 0,307 0,313 0,333
β 0,140 0,229 0,263 0,281 0,299 0,307 0,312 0,333
γ 1,000 0,795 0,753 0,745 0,743 0,742 0,742 0,742


Расчёт различных некруглых поперечных сечений на прочность и жёсткость выполняется аналогично изложенному в предыдущей лекции. С помощью условий прочности и жёсткости решаются задачи с целью подбора размеров поперечного сечения, определения допустимой нагрузки и проверки выполнения условий. В зависимости от профиля поперечного сечения по разному определяются геометрические характеристики поперечного сечения, фигурирующие в формулах для вычисления напряжений и перемещений. (Посмотреть эти формулы самостоятельно по учебнику).

Решение статически неопределимых задач при кручении . Задачи кручения стержней являются статически неопределимыми , если крутящие моменты, возникающие в поперечных сечениях стержня, не могут быть определены с помощью только одних уравнений равновесия. Для решения таких задач необходимо рассматривать деформированное состояние скручиваемого стержня. Алгоритм решения аналогичен изложенному в теме осевое растяжение–сжатие.

В случае постоянной жёсткости стержня удобно применять для решения статически неопределимых задач метод начальных параметров (ознакомиться с этим методом самостоятельно).

Задачи могут быть несколько раз статически неопределимыми. Рассмотрим один раз статически неопределимые задачи.

Рис. 11.3. Статически неопределимые стержни при кручении

а) Раскрытие статической неопределимости

m X = 0; М А - М + М В n st

Перемещение (угол закручивания) точки В (жесткая заделка) невозможно, тогда это перемещение можно представить как сумму углов закручивания грузовых участков φ В = φ I + φ II = 0 (2).

М t =const можно представить в виде: (3). Подставим (3) в (2): . (4)

Запишем уравнения крутящих моментов на грузовых участках, рассматривая при этом равновесие правой части, содержащей опорную реакцию М В : М t ,I = М В - const, М t ,II = М В - М – const. При равенстве жесткостей на грузовых участках уравнение (4) примет вид:

М В

б) Раскрытие статической неопределимости

1. Рассмотрим статическую сторону задачи

Составим уравнение равновесия:

m X = 0; М А + mlМ В = 0 (1), найдем степень статической неопределимости как разницу между неизвестными опорными реакциями и количеством уравнений статики n st = 2 – 1 = 1 – задача один раз статически неопределимая и для раскрытия статической неопределимости требуется еще одно уравнение.

2. Рассмотрим геометрическую сторону задачи

Перемещение (угол закручивания) точки В (жесткая заделка) невозможно, тогда это перемещение можно представить как сумму углов закручивания грузовых участков φ В = φ I = 0 (2).

3. Рассмотрим физическую сторону задачи

Угол закручивания на грузовом участке длиной, где М t описывается линейным уравнением можно представить в виде:

(3). Подставим (3) в (2): . (4)

Запишем уравнение крутящих моментов на грузовом участке, рассматривая при этом равновесие правой части, содержащей опорную реакцию М В : М t , I = - М В + mx , подставим уравнение внутреннего усилия в (4):

Решим полученное уравнение относительно одного неизвестного М В . Далее задача решается как статически определимая.

Расчёт стержней при кручении по предельному состоянию. Рассмотрим распределение касательных напряжений в поперечном сечении круглого стержня, выполненного из упругопластического материала, подчиняющегося идеализированной диаграмме Прандтля (рис. 11.4).


Рис. 11.4. Диаграмма Прандтля

τ max < τ s τ max = τ s . τ s τ s

M t = τ s W ρ Упругое ядро Пластический шарнир

(M t , lim )

Рис. 11.5. Распределение касательных напряжений в поперечном сечении

При углах сдвига γ ≤ γ s материал подчиняется закону Гука, т.е. τ = G γ, при γ = γ s касательное напряжение достигает предела текучести τ s , при γ > γ s материал «течёт» при постоянном напряжении τ = τ s . На этом заканчивается чисто упругая стадия работы (рис. 11.5 б) и момент достигает опасного значения. При дальнейшем увеличении крутящего момента эпюра напряжений приобретает вид, приведённый на рис. 11. 5 в. При увеличении крутящего момента упругое ядро уменьшается, и текучесть материала происходит по всему сечению, наступает состояние предельного равновесия, соответствующее максимуму несущей способности стержня. Для сплошного круглого сечения в случае, представленном на рис. 11. 5 г грузоподъёмность стержня повышается на 33% по сравнению с грузоподъёмностью, вычисленной для ситуации приведённой на рис. 11. 5 г.

При расчете на кручение прямых брусьев, жестко защемленных одним концом, а также при расчете валов (представляющих собой вращающиеся брусья, нагруженные взаимно уравновешенными скручивающими моментами) значения крутящих моментов в поперечных сечениях можно определить с помощью одних лишь уравнений равновесия (методом сечений). Следовательно, такие задачи являются статически определимыми.

Задачи расчета на кручение являются статически неопределимыми, если крутящие моменты, возникающие в поперечных сечениях скручиваемых стержней, нельзя определить с помощью только уравнений равновесия. Для решения этих задач дополнительно к уравнениям равновесия, составляемым для системы в целом или ее отсеченной части, необходимо составить также уравнения перемещений, основанные на рассмотрении характера деформации системы.

Рассмотрим для примера брус круглого сечения, жестко заделанный обоими концами и нагруженный моментом ЗЛ на расстоянии а от левого конца (рис. 23.6, а).

Для решения данной задачи можно составить лишь одно уравнение равновесия - в виде равенства нулю суммы моментов относительно оси бруса:

где и - реактивные скручивающие моменты, возникающие в заделках.

Дополнительное уравнение для решения рассматриваемой задачи можно получить следующим образом. Отбросим левое опорное закрепление бруса, но оставим правое (рис. 23.6, б).

Поворот левого конца полученного таким путем бруса должен быть равен нулю, т. е. так как в действительности этот конец жестко закреплен и не может поворачиваться.

На основании принципа независимости действия сил уравнение перемещений имеет вид

Здесь - угол поворота левого конца бруса от действия внешнего скручивающего момента (рис. 23.6, в); - угол поворота левого конца от действия внешнего момента (рис. 23.6, г).

По второй из формул (14.6), учитывая, что правый конец бруса не поворачивается (т. е. ), и по формуле (13.6) находим

Подставим эти значения в уравнение перемещений:

Из уравнения равновесия

После определения моментов и эпюру крутящих моментов можно построить обычным способом, т. е. как для статически определимого бруса (рис. 23.6, д). Для рассмотренной задачи эта эпюра представлена на рис. 23.6, е.

Наглядное представление об изменении углов поворота поперечных сечений бруса по его длине дает эпюра углов поворота (иногда ее называют эпюрой углов закручивания). Каждая ордината этой эпюры дает в принятом масштабе величину угла поворота соответствующего поперечного сечения бруса.

Построим такую эпюру для бруса по рис. 23.6, д, учитывая при этом, что значение уже найдено и эпюра крутящих моментов построена (см. рис. 23.6, е). Крайнее правое сечение А бруса неподвижно, т. е. Произвольное поперечное сечение, принадлежащее участку АС и отстоящее на расстояние от правого конца, повернется на угол [см. вторую из формул (14.6)]

Здесь - угол закручивания на участке длиной определяемый по формуле (13.6).

Таким образом, углы поворота изменяются по линейному закону в зависимости от расстояния Подставляя в полученное выражение найдем угол поворота сечения С:

Заметим, что всегда при нагружении бруса постоянного сечения сосредоточенными скручивающими моментами эпюра углов поворота поперечных сечений на каждом из участков бруса линейна.

Для построения эпюры на участке СВ вычислим угол поворота сечения В. На основании второй из формул (14.6) и формулы (13.6)

Этот результат подтверждает правильность решения задачи, так как по условию сечение В заделано жестко. Таким образом, кроме чисто иллюстративного значения, построение эпюры углов поворота поперечных сечений можно рассматривать как метод контроля решения некоторых статически неопределимых задач.

Построенная по полученным значениям эпюра углов поворота представлена на рис. 23.6, ж.

При действии на брус нескольких внешних скручивающих моментов, а также для брусьев, имеющих на отдельных участках разные поперечные сечения, составление дополнительного уравнения производится способом, аналогичным показанному (см. пример 5.6).

При расчете цилиндрических пружин наряду со статически определимыми встречаются также и статически неопределимые задачи.

Если концы пружины не закреплены и могут свободно перемещаться вдоль оси пружины или если закреплен лишь один ее конец, то задача расчета такой пружины статически определима. Если же оба конца пружины неподвижно закреплены, то задача ее расчета статически неопределима. Для ее решения необходимо составить дополнительное уравнение перемещений. Составление этого уравнения аналогично составлению уравнения, применяемого при решении задач расчета прямого стержня, закрепленного обоими концами, на внешние нагрузки, действующие вдоль его оси. Составление дополнительных уравнений для такого типа задач рассмотрено выше в § 9.2 (см. также пример 3.6).


Close