Перейдем к рассмотрению еще одного принципа механики, который устанавливает общее условие равновесия механической системы. Под равновесием (см. § 1) мы понимаем то состояние системы, при котором все ее точки под действием приложенных сил находятся в покое по отношению к инерциальной системе отсчета (рассматриваем так называемое «абсолютное» равновесие). Одновременно будем считать все наложенные на систему связи стационарными и специально это в дальнейшем каждый раз оговаривать не будем.

Введем понятие о возможной работе, как об элементарной работе, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки. Будем возможную работу активной силы обозначать символом , а возможную работу реакции N связи - символом

Дадим теперь общее определение понятия об идеальных связях, которым мы уже пользовались (см. § 123): идеальными называются связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю, т. е.

Приведенное в § 123 и выраженное равенством (52) условие идеальности связей, когда они одновременно являются стационарными, соответствует определению (98), так как при стационарных связях каждое действительное перемещение совпадает с одним из возможных. Поэтому примерами идеальных связей будут все примеры, приведенные в § 123.

Для определения необходимого условия равновесия докажем, что если механическая система с идеальными связями находится действием приложенных сил в равновесии, то при любом возможном перемещении системы должно выполняться равенство

где - угол между силой и возможным перемещением.

Обозначим равнодействующие всех (и внешних, и внутренних) активных сил и реакций связей, действующих на какую-нибудь точку системы соответственно через . Тогда, поскольку каждая из точек системы находится в равновесии, , а следовательно, и сумма работ этих сил при любом перемещении точки будет тоже равна нулю, т. е. . Составив такие равенства для всех точек системы и сложив их почленно, получим

Но так как связи идеальные, представляют собой возможные перемещения точек системы, то вторая сумма по условию (98) будет равна нулю. Тогда равна нулю и первая сумма, т. е. выполняется равенство (99). Таким образом, доказано, что равенство (99) выражает необходимое условие равновесия системы.

Покажем, что это условие является и достаточным, т. е. что если к точкам механической системы, находящейся в покое, приложить активные силы удовлетворяющие равенству (99), то система останется в покое. Предположим обратное, т. е. что система при этом Придет в движение и некоторые ее точки совершат действительные перемещения . Тогда силы совершат на этих перемещениях работу и по теореме об изменении кинетической энергии будет:

где, очевидно, , так как вначале система была в покое; следовательно, и . Но при стационарных связях действительные перемещения совпадают с какими-то из возможных перемещений и на этих перемещениях тоже должно быть что противоречит условию (99). Таким образом, когда приложенные силы удовлетворяют условию (99), система из состояния покоя выйти не может и это условие является достаточным условием равновесия.

Из доказанного вытекает следующий принцип возможных перемещений: для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю. Математически сформулированное условие равновесия выражается равенством (99), которое называют также уравнением возможных работ. Это равенство можно еще представить в аналитической форме (см. § 87):

Принцип возможных перемещений устанавливает общее условие равновесия механической системы, не требующее рассмотрения равновесия отдельных частей (тел) этой системы и позволяющее при идеальных связях исключить из рассмотрения все наперед неизвестные реакции связей.


Принцип возможных перемещений сформулирован для решения задач статики методами динамики.

Определения

Связями называются все тела, ограничивающие перемещение рассматриваемого тела.

Идеальными называются связи, работа реакций которых на любом возможном перемещении равна нулю.

Числом степеней свободы механической системы называется число таких независимых между собой параметров, с помощью которых однозначно определяется положение системы.

Например, шар, расположенный на плоскости имеет пять степеней свободы, а цилиндрический шарнир - одну степень свободы.

В общем случае механическая система может иметь бесконечное число степеней свободы.

Возможными перемещениями будем называть такие перемещения, которые, во-первых, допускаются наложенными связями, и, во-вторых, являются бесконечно малыми.

Кривошипно-ползунный механизм имеет одну степень свободы. В качестве возможных перемещений могут приниматься параметры -  , x и др.

Для любой системы число независимых друг от друга возможных перемещений равно числу степеней свободы.

Пусть некоторая система находится в равновесии и связи, наложенные на эту систему, являются идеальными. Тогда для каждой точки системы можно записать уравнение

, (102)

где
- равнодействующая активных сил, приложенных к материальной точке;

- равнодействующая реакций связей.

Умножим (102) скалярно на вектор возможного перемещения точки

,

так как связи идеальные, то всегда
, останется сумма элементарных работ активных сил, действующих на точку

. (103)

Уравнение (103) можно записать для всех материальных точек, суммируя которые получим

. (104)

Уравнение (104) выражает следующий принцип возможных перемещений.

Для равновесия системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Число уравнений (104) равно числу степеней свободы данной системы, что является достоинством этого метода.

Общее уравнение динамики (принцип Даламбера-Лагранжа)

Принцип возможных перемещений позволяет решать задачи статики методами динамики, с драгой стороны, принцип Даламбера дает общий метод решения задач динамики методами статики. Объединяя два эти принципа можно получить общий метод решения задач механики, который называется принципом Даламбера-Лагранжа.

. (105)

При движении системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равно нулю.

В аналитической форме уравнение (105) имеет вид

Уравнения Лагранжа II рода

Обобщенными координатами (q ) называются такие независимые друг от друга параметры, которые однозначно определяют поведение механической системы.

Число обобщенных координат всегда равно числу степеней свободы механической системы.

В качестве обобщенных координат могут быть выбраны любые параметры, имеющие любую размерность.

Н
апример, при изучении движения математического маятника, имеющего одну степень свободы, в качестве обобщенной координатыq могут быть приняты параметры:

x (м), y (м) – координаты точки;

s (м) – длина дуги;

 (м 2) – площадь сектора;

 (рад) – угол поворота.

При движении системы ее обобщенные координаты будут с течением времени непрерывно изменяться

Уравнения (107) – это уравнения движения системы в обобщенных координатах.

Производные от обобщенных координат по времени называются обобщенными скоростями системы

. (108)

Размерность обобщенной скорости зависит от размерности обобщенной координаты.

Через обобщенные координаты могут быть выражены любые другие координаты (декартовы, полярные и др.).

Наряду с понятием обобщенной координаты вводится понятие обобщенной силы.

Под обобщенной силой понимают величину равную отношению суммы элементарных работ всех сил, действующих на систему на некотором элементарном приращении обобщенной координаты, к этому приращению

, (109)

где S – индекс обобщенной координаты.

Размерность обобщенной силы зависит от размерности обобщенной координаты.

Для нахождения уравнений движения (107) механической системы с геометрическими связями в обобщенных координатах используются дифференциальные уравнения в форме Лагранжа II рода

. (110)

В (110) кинетическая энергия T системы выражена через обобщенные координаты q S и обобщенные скорости .

Уравнения Лагранжа дают единый и достаточно простой метод решения задач динамики. Вид и число уравнений не зависит от количества тел (точек), входящих в систему, а только от числа степеней свободы. При идеальных связях эти уравнения позволяют исключить все заранее неизвестные реакции связей.

Необходимо и достаточно, чтобы сумма работ , всех приложенных к системе активных сил на любом возможном перемещении системы была равна нулю.

Количество уравнений, которые можно составить для механической системы, исходя из принципа возможных перемещений, равно количеству степеней свободы этой самой механической системы.

Литература

  • Тарг С. М. Краткий курс теоретической механики. Учеб. для втузов.- 10-е изд., перераб. и доп. - М.: Высш. шк., 1986.- 416 с, ил.
  • Основной курс теоретической механики (часть первая) Н. Н. Бухгольц, изд-во «Наука», Главная редакция физико-математической литературы, Москва, 1972, 468 стр.

Wikimedia Foundation . 2010 .

Смотреть что такое "Принцип возможных перемещений" в других словарях:

    принцип возможных перемещений

    Один из вариационных принципов механики, устанавливающий общее условие равновесия механич. системы. Согласно В. п. п., для равновесия механич. системы с идеальными связями (см. СВЯЗИ МЕХАНИЧЕСКИЕ) необходимо и достаточно, чтобы сумма работ dAi… … Физическая энциклопедия

    Большой Энциклопедический словарь

    ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ ПРИНЦИП, для равновесия механической системы необходимо и достаточно, чтобы сумма работ всех действующих на систему сил при любом возможном перемещении системы была равна нулю. Возможных перемещений принцип применяется при… … Энциклопедический словарь

    Один из вариационных принципов механики (См. Вариационные принципы механики), устанавливающий общее условие равновесия механической системы. Согласно В. п. п., для равновесия механической системы с идеальными связями (см. Связи… … Большая советская энциклопедия

    Виртуальных скоростей принцип, дифференциальный вариационный принцип классической механики, выражающий наиболее общие условия равновесия механических систем, стесненных идеальными связями. Согласно В. п. п. механич. система находится в равновесии … Математическая энциклопедия

    Для равновесия механической системы необходимо и достаточно, чтобы сумма работ всех действующих на систему сил при любом возможном перемещении системы была равна нулю. Возможных перемещений принцип применяется при изучении условий равновесия… … Энциклопедический словарь

    Для равновесия механич. системы необходимо и достаточно, чтобы сумма работ всех действующих на систему сил при любом возможном перемещении системы была равна нулю. В. п. п. применяется при изучении условий равновесия сложных механич. систем… … Естествознание. Энциклопедический словарь

    принцип виртуальных смещений - virtualiųjų poslinkių principas statusas T sritis fizika atitikmenys: angl. principle of virtual displacement vok. Prinzip der virtuellen Verschiebungen, n rus. принцип виртуальных смещений, m; принцип возможных перемещений, m pranc. principe des … Fizikos terminų žodynas

    Один из вариационных принципов механики, согласно к рому для данного класса сравниваемых друг с другом движений механич. системы действительным является то, для которого физ. величина, наз. действием, имеет наименьшее (точнее, стационарное)… … Физическая энциклопедия

Книги

  • Теоретическая механика. В 4-х томах. Том 3: Динамика. Аналитичекая механика. Тексты лекций. Гриф МО РФ , Богомаз Ирина Владимировна. В учебном пособии изложены две части единого курса по теоретической механике: динамика и аналитическая механика. В первой части подробно рассматривается первая ивторая задачи динамики, также…

Рисунок 2.4

Решение

Заменим распределенную нагрузку сосредоточенной силой Q = q∙DH . Эта сила приложена в середине отрезка DH – в точке L .

Силу F разложим на составляющие, спроецировав ее на оси : горизонтальную F x cosα и вертикальную F y sinα .

Рисунок 2.5

Чтобы решить задачу с помощью принципа возможных перемещений, необходимо, чтобы конструкция могла перемещаться и при этом чтобы в уравнении работ была одна неизвестная реакция . В опоре A реакция раскладывается на составляющие X A , Y A .

Для определения X A изменим конструкцию опоры A так, чтобы точка A могла перемещаться только по горизонтали. Выразим перемещения точек конструкции через возможный поворот части CDB вокруг точки B на угол δφ 1 , часть AKC конструкции в этом случае поворачивается вокруг точки C V1 — мгновенного центра вращения (рисунок 2.5) на угол δφ 2 , и перемещения точек L и C – будут

δS L = BL∙δφ 1 ;
δS C = BC∙δφ 1
.

В то же время

δS C = CC V1 ∙δφ 2

δφ 2 = δφ 1 ∙BC/CC V1 .

Уравнение работ удобнее составить через работу моментов заданных сил , относительно центров вращений.

Q∙BL∙δφ 1 + F x ∙BH∙δφ 1 + F y ∙ED∙δφ 1 +
+ M∙δφ 2 — X A ∙AC V1 ∙δφ 2 = 0
.

Реакция Y A работу не совершает. Преобразуя это выражение, получим

Q∙(BH + DH/2)∙δφ 1 + F∙cosα∙BD∙δφ 1 +
+ F∙sinα∙DE∙δφ 1 + M∙δφ 1 ∙BC/CC V1 —
— X A ∙AC V1 ∙δφ 1 ∙BC/CC V1 = 0
.

Сократив на δφ 1 , получим уравнение, из которого легко находится X A .

Для определения Y A конструкцию опоры A изменим так, чтобы при перемещении точки A работу совершала только сила Y A (рисунок 2.6). Примем за возможное перемещение части конструкции BDC поворот вокруг неподвижной точки B δφ 3 .

Рисунок 2.6

Для точки C δS C = BC∙δφ 3 , мгновенным центром вращения для части конструкции AKC будет точка C V2 , и перемещение точки C выразится.

Устанавливающий общее условие равновесия механической системы . Согласно этому принципу, для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма виртуальных работ A_i только активных сил на любом возможном перемещении системы была равна нулю (если система приведена в это положение с нулевыми скоростями).

Количество линейно независимых уравнений равновесия, которые можно составить для механической системы, исходя из принципа возможных перемещений, равно количеству степеней свободы этой механической системы.

Возможными перемещениями несвободной механической системы называются воображаемые бесконечно малые перемещения, допускаемые в данный момент наложенными на систему связями (при этом время, входящее явно в уравнения нестационарных связей, считается зафиксированным). Проекции возможных перемещений на декартовы координатные оси называются вариациями декартовых координат.

Виртуальными перемещениями называются бесконечно малые перемещения, допускаемые связями, при "замороженном времени". Т.е. они отличаются от возможных перемещений, только когда связи реономны (явно зависят от времени).

Если, например, на систему наложено l голономных реономных связей:

f_{\alpha}(\vec r, t) = 0, \quad \alpha = \overline{1,l}

То возможные перемещения \Delta \vec r - это те, которые удовлетворяют

\sum_{i=1}^{N} \frac{\partial f_{\alpha}}{\partial \vec{r}} \cdot \Delta \vec{r} + \frac{\partial f_{\alpha}}{\partial t} \Delta t = 0, \quad \alpha = \overline{1,l}

А виртуальные \delta \vec r:

\sum_{i=1}^{N} \frac{\partial f_{\alpha}}{\partial \vec{r}}\delta \vec{r} = 0, \quad \alpha = \overline{1,l}

Виртуальные перемещения, вообще говоря, не имеют отношения к процессу движения системы - они вводятся лишь для того, чтобы выявить существующие в системе соотношения сил и получить условия равновесия. Малость же перемещений нужна для того, чтобы можно было считать реакции идеальных связей неизменными.

Напишите отзыв о статье "Принцип возможных перемещений"

Литература

  • Бухгольц Н. Н. Основной курс теоретической механики. Ч. 1. 10-е изд. - Спб.: Лань, 2009. - 480 с. - ISBN 978-5-8114-0926-6 .
  • Тарг С. М. Краткий курс теоретической механики: Учебник для вузов. 18-е изд. - М .: Высшая школа, 2010. - 416 с. - ISBN 978-5-06-006193-2 .
  • Маркеев А. П. Теоретическая механика: учебник для университетов. - Ижевск: НИЦ "Регулярная и хаотичная динамика", 2001. - 592 с. - ISBN 5-93972-088-9 .

Отрывок, характеризующий Принцип возможных перемещений

– Nous у voila, [В этом то и дело.] отчего же ты прежде ничего не сказала мне?
– В мозаиковом портфеле, который он держит под подушкой. Теперь я знаю, – сказала княжна, не отвечая. – Да, ежели есть за мной грех, большой грех, то это ненависть к этой мерзавке, – почти прокричала княжна, совершенно изменившись. – И зачем она втирается сюда? Но я ей выскажу всё, всё. Придет время!

В то время как такие разговоры происходили в приемной и в княжниной комнатах, карета с Пьером (за которым было послано) и с Анной Михайловной (которая нашла нужным ехать с ним) въезжала во двор графа Безухого. Когда колеса кареты мягко зазвучали по соломе, настланной под окнами, Анна Михайловна, обратившись к своему спутнику с утешительными словами, убедилась в том, что он спит в углу кареты, и разбудила его. Очнувшись, Пьер за Анною Михайловной вышел из кареты и тут только подумал о том свидании с умирающим отцом, которое его ожидало. Он заметил, что они подъехали не к парадному, а к заднему подъезду. В то время как он сходил с подножки, два человека в мещанской одежде торопливо отбежали от подъезда в тень стены. Приостановившись, Пьер разглядел в тени дома с обеих сторон еще несколько таких же людей. Но ни Анна Михайловна, ни лакей, ни кучер, которые не могли не видеть этих людей, не обратили на них внимания. Стало быть, это так нужно, решил сам с собой Пьер и прошел за Анною Михайловной. Анна Михайловна поспешными шагами шла вверх по слабо освещенной узкой каменной лестнице, подзывая отстававшего за ней Пьера, который, хотя и не понимал, для чего ему надо было вообще итти к графу, и еще меньше, зачем ему надо было итти по задней лестнице, но, судя по уверенности и поспешности Анны Михайловны, решил про себя, что это было необходимо нужно. На половине лестницы чуть не сбили их с ног какие то люди с ведрами, которые, стуча сапогами, сбегали им навстречу. Люди эти прижались к стене, чтобы пропустить Пьера с Анной Михайловной, и не показали ни малейшего удивления при виде их.
– Здесь на половину княжен? – спросила Анна Михайловна одного из них…
– Здесь, – отвечал лакей смелым, громким голосом, как будто теперь всё уже было можно, – дверь налево, матушка.
– Может быть, граф не звал меня, – сказал Пьер в то время, как он вышел на площадку, – я пошел бы к себе.
Анна Михайловна остановилась, чтобы поровняться с Пьером.
– Ah, mon ami! – сказала она с тем же жестом, как утром с сыном, дотрогиваясь до его руки: – croyez, que je souffre autant, que vous, mais soyez homme. [Поверьте, я страдаю не меньше вас, но будьте мужчиной.]
– Право, я пойду? – спросил Пьер, ласково чрез очки глядя на Анну Михайловну.


Close