3.1. Электрический заряд

Еще в древности люди обратили внимание на то, что потертый шерстью кусочек янтаря начинает притягивать к себе различные мелкие предметы: пылинки, ниточки и тому подобное. Вы сами можете легко убедиться, что пластмассовая расческа, потертая о волосы, начинает притягивать небольшие кусочки бумаги. Это явление называется электризацией , а силы, действующие при этом – электрическими силами . Оба названия происходят от греческого слова " электрон" , что означает " янтарь" .
При трении расчески о волосы или эбонитовой палочки о шерсть предметы заряжаются , на них образуются электрические заряды . Заряженные тела взаимодействуют друг с другом и между ними возникают электрические силы.
Электризоваться трением могут не только твердые тела, но и жидкости, и даже газы.
При электризации тел вещества, из которых состоят электризующиеся тела, в другие вещества не превращаются. Таким образом, электризация – физическое явление.
Существует два разных рода электрических зарядов. Совершенно условно они названы " положительным" зарядом и " отрицательным" зарядом (а можно было бы назвать их " черный" и " белый" , или " прекрасный" и " ужасный" , или как-то иначе).
Положительно заряженными называют тела, которые действуют на другие заряженные предметы так же, как стекло, наэлектризованное трением о шелк.
Отрицательно заряженными называют тела, которые действуют на другие заряженные предметы так же, как сургуч, наэлектризованный трением о шерсть.
Основное свойство заряженных тел и частиц: одноименно заряженные тела и частицы отталкиваются, а разноименно заряженные – притягиваются. В опытах с источниками электрических зарядов вы познакомитесь и с некоторыми другими свойствами этих зарядов: заряды могут " перетекать" с одного предмета на другой, накапливаться, между заряженными телами может происходить электрический разряд и так далее. Подробно эти свойства вы изучите в курсе физики.

3.2. Закон Кулона

Электрический заряд (Q или q ) – физическая величина, он может быть больше или меньше, и, следовательно, его можно измерять. Но непосредственно сравнивать заряды друг с другом физики пока не могут, поэтому сравнивают не сами заряды, а действие, которое заряженные тела оказывают друг на друга, или на другие тела, например, силу с которой одно заряженное тело действует на другое.

Силы (F), действующие на каждое из двух точечных заряженных тел противоположно направлены вдоль прямой, соединяющей эти тела. Их величины равны между собой, прямо пропорциональны произведению зарядов этих тел (q 1 ) и (q 2 ) и обратно пропорциональны квадрату расстояния (l) между ними.

Это соотношение носит название " закон Кулона" в честь открывшего его в 1785 г. французского физика Шарля Кулона (1763-1806). Важнейшая для химии зависимость кулоновских сил от знака заряда и расстояния между заряженными телами наглядно показана на рис. 3.1.

Единица измерений электрического заряда – кулон (определение в курсе физики). Заряд величиной в 1 Кл протекает через электрическую лампочку мощностью 100 ватт примерно за 2 секунды (при напряжении 220 В).

3.3. Элементарный электрический заряд

До конца XIX века природа электричества оставалась неясной, но многочисленные эксперименты привели ученых к выводу, что величина электрического заряда не может изменяться непрерывно. Было установлено, что существует наименьшая, далее неделимая порция электричества. Заряд этой порции получил название " элементарный электрический заряд" (обозначается буквой е ). Он оказался равен 1,6 . 10– 19 Кл. Это очень маленькая величина – через нить той же электрической лампочки за 1 секунду проходит почти 3 миллиарда миллиардов элементарных электрических зарядов.
Любой заряд является величиной, кратной элементарному электрическому заряду, поэтому элементарный электрический заряд удобно использовать в качестве единицы измерений малых зарядов. Таким образом,

1е = 1,6 . 10– 19 Кл.

На рубеже XIX и XX веков физики поняли, что носителем элементарного отрицательного электрического заряда является микрочастица, получившая название электрон (Джозеф Джон Томсон, 1897 г.). Носитель элементарного положительного заряда – микрочастица под названием протон – был обнаружен несколько позже (Эрнест Резерфорд, 1919 г.). Тогда же было доказано, что положительный и отрицательный элементарные электрические заряды равны по абсолютной величине

Таким образом, элементарный электрический заряд – это заряд протона.
С другими характеристиками электрона и протона вы познакомитесь в следующей главе.

Несмотря на то, что в состав физических тел входят заряженные частицы, в обычном состоянии тела незаряжены, или электронейтральны . Также электронейтральны и многие сложные частицы, например, атомы или молекулы. Суммарный заряд такой частицы или такого тела оказывается равным нулю потому, что число электронов и число протонов, входящих в состав частицы или тела, равны.

Тела или частицы становятся заряженными, если электрические заряды разделяются: на одном теле (или частице) оказывается избыток электрических зарядов одного знака, а на другом – другого. В химических явлениях электрический заряд какого-либо одного знака (положительный или отрицательный) не может ни появиться, ни исчезнуть, так как не могут появиться или исчезнуть носители элементарных электрических зарядов только одного знака.

ПОЛОЖИТЕЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, ОТРИЦАТЕЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, ОСНОВНОЕ СВОЙСТВО ЗАРЯЖЕННЫХ ТЕЛ И ЧАСТИЦ, ЗАКОН КУЛОНА, ЭЛЕМЕНТАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД
1.Как заряжается шелк при трении о стекло? А шерсть при трении о сургуч?
2.Какое число элементарных электрических зарядов составляет 1 кулон?
3.Определите силу, с который притягиваются друг к другу два тела с зарядами +2 Кл и –3 Кл, находящиеся друг от друга на расстоянии 0,15 м.
4.Два тела с зарядами +0,2 Кл и –0,2Кл находятся на расстоянии 1 см друг от друга. Определите силу с которой они притягиваются.
5.С какой силой отталкиваются друг от друга две частицы, несущие одинаковый заряд, равный +3 е , и находящиеся на расстоянии 2 Е? Значение константы в уравнении закона Кулона k = 9 . 10 9 Н. м 2 /Кл 2 .
6.С какой силой притягивается электрон к протону, если расстояние между ними 0,53 Е? А протон к электрону?
7.Два одноименно и одинаково заряженных шарика соединены непроводящей заряды нитью. Середина нити неподвижно закреплена. Нарисуйте, как расположатся в пространстве эти шарики в условиях, когда силой тяжести можно пренебречь.
8.Как в этих же условиях будут расположены в пространстве три таких же шарика, привязанных одинаковыми по длине нитями к одной опоре? А четыре?
Опыты по притяжению и отталкиванию заряженных тел.

Происходящие в природе физические процессы не всегда объясняются действием законов молекулярно-кинетической теории, механики либо термодинамики. Существуют еще электромагнитные силы, которые действуют на расстоянии и не зависят от массы тела.

Их проявления впервые описаны в трудах древних ученых Греции, когда они янтарем, потертым о шерсть, притягивали легкие, маленькие частицы отдельных веществ.

Исторический вклад ученых в развитие электродинамики

Опыты с янтарем подробно изучались английским исследователем Уильямом Гильбертом . В последних годах XVI века он сделал отчет о своей работе, а предметы, способные притягивать другие тела на расстоянии, обозначил термином «наэлектризованные».

Французским физиком Шарлем Дюфе было определено существование зарядов с противоположными знаками: одни образовывались при трении стеклянных предметов о шелковую ткань, а другие - смол по шерсти. Он так и назвал их: стеклянные и смоляные. После завершения исследований Бенджамина Франклина было введено понятие отрицательных и положительных зарядов.

Шарль Кулон реализовал возможность измерения силы зарядов конструкцией крутильных весов собственного изобретения.

Роберт Милликен на основе серии проведенных опытов установил дискретный характер электрических зарядов любого вещества, доказав, что они состоят из определенного количества элементарных частиц. (Не путать с другим понятием этого термина - дробности, прерывистости.)

Труды перечисленных ученых послужили фундаментом современных знаний о процессах и явлениях, происходящих в электрических и магнитных полях, создаваемых электрическими зарядами и их движением, изучаемых электродинамикой.

Определение зарядов и принципы их взаимодействия

Электрическим зарядом характеризуют свойства веществ, обеспечивающих им возможность создавать электрические поля и взаимодействовать в электромагнитных процессах. Еще его называют количеством электричества и определяют как физическую скалярную величину. Для обозначения заряда приняты символы «q» или «Q», а при измерениях используют единицу «Кулон», названную в честь французского ученого, разработавшего уникальную методику.

Им был создан прибор, в корпусе которого использовались подвешенные на тонкой нити из кварца шарики. Они ориентировались в пространстве определенным образом, а их положение регистрировалось относительно проградуированной шкалы с равными делениями.

Через специальное отверстие в крышке к этим шарикам подводился другой шар, обладающий дополнительным зарядом. Возникающие силы взаимодействия заставляли отклоняться шарики, поворачивали их коромысло. Величина разницы отсчетов на шкале до ввода заряда и после него позволяла оценивать количество электричества в испытуемых образцах.

Заряд в 1 кулон характеризуется в системе СИ силой тока в 1 ампер, проходящей через поперечное сечение проводника за время, равное 1 секунде.

Все электрические заряды современная электродинамика разделяет на:

    положительные;

    отрицательные.

При взаимодействии их между собой у них возникают силы, направление которых зависит от существующей полярности.


Одинакового типа заряды, положительные либо отрицательные, всегда отталкиваются в противоположные стороны, стремясь, как можно дальше удалиться друг от друга. А у зарядов противоположных знаков действуют силы, стремящиеся сблизить их и соединить в одно целое.

Принцип суперпозиции

Когда в определенном объеме находится несколько зарядов, то для них действует принцип суперпозиции.


Его смысл в том, что каждый заряд определенным образом по рассмотренному выше способу взаимодействует со всеми остальными, притягиваясь к разноименным и отталкиваясь от однотипных. К примеру, на положительный заряд q1 действует сила притяжения F31 к отрицательному заряду q3 и отталкивания F21 - от q2.

Результирующая сила F1, действующая на q1, определяется геометрическим сложением векторов F31 и F21. (F1= F31+ F21).

Таким же методом определяются действующие результирующие силы F2 и F3 на заряды q2 и q3 соответственно.

Посредством принципа суперпозиции сделан вывод о том, что при определенном количестве зарядов в замкнутой системе между всеми ее телами действуют установившиеся электростатические силы, а потенциал в любой определенной точке этого пространства равен сумме потенциалов от всех отдельно приложенных зарядов.

Действие этих законов подтверждают созданные приборы электроскоп и электрометр , имеющие общий принцип работы.


Электроскоп состоит из двух одинаковых лепестков тонкой фольги, подвешенных в изолированном пространстве на токопроводящей нити, присоединенной к металлическому шарику. В обычном состоянии на этот шарик заряды не действуют, поэтому лепестки свободно висят в пространстве внутри колбы прибора.

Как можно передавать заряд между телами

Если к шарику электроскопа поднести заряженное тело, например, палочку, то заряд пройдет через шарик по токопроводящей нити к лепесткам. Они получат одноименный заряд и станут отодвигаться друг от друга на угол, пропорциональный приложенному количеству электричества.

У электрометра такое же принципиальное устройство, но он имеет небольшие отличия: один лепесток закреплен стационарно, а второй отходит от него и снабжен стрелкой, которая позволяет снимать отсчет с проградуированной шкалы.

Для переноса заряда от удаленного стационарно закрепленного и заряженного тела на электрометр можно воспользоваться промежуточными носителями.


Измерения, сделанные электрометром, не обладают высоким классом точности и на их основе сложно анализировать силы, действующие между зарядами. Для их исследования больше приспособлены крутильные весы Кулона. У них использованы шарики с диаметрами, значительно меньшими, чем их удаление друг от друга. Они обладают свойствами точечных зарядов - заряженных тел, размеры которых не влияют на точность прибора.

Измерения, выполненные Кулоном, подтвердили его догадку о том, что точечный заряд передается от заряженного тела к такому же по свойствам и массе, но незаряженному таким образом, чтобы равномерно распределиться между ними, уменьшаясь на источнике в 2 раза. Таким способом удалось уменьшать величину заряда в два, три и иное количество раз.

Силы, существующие между неподвижными электрическими зарядами, называют кулоновским либо статическим взаимодействием. Их изучает электростатика, являющаяся одним из разделов электродинамики.

Виды носителей электрических зарядов

Современная наука считает самой маленькой отрицательно заряженной частицей электрон , а положительной - позитрон . Они имеют одинаковую массу 9,1·10-31 кг. Элементарная частица протон обладает всего одним положительным зарядом и массой 1,7·10-27 кг. В природе количество положительных и отрицательных зарядов уравновешено.

В металлах движение электронов создает , а в полупроводниках носителями его зарядов являются электроны и дырки.

В газах ток образуется передвижением ионов - заряженных неэлементарных частиц (атомов или молекул) с положительными зарядами, называемыми катионами либо отрицательными - анионами.

Ионы образуются из нейтральных частиц.


Положительный заряд создается у частицы, потерявшей электрон под действием мощного электрического разряда, светового или радиоактивного облучения, потока ветра, движения масс воды или ряда других причин.

Отрицательные ионы образуются из нейтральных частиц, дополнительно получивших электрон.

Использование ионизации в медицинских целях и быту

Исследователи давно заметили способность отрицательных ионов воздействовать на организм человека, улучшать потребление кислорода воздуха, быстрее доставлять его к тканям и клеткам, ускорять процесс окисления серотонина. Это все в комплексе значительно повышает иммунитет, улучшает настроение, снимает боли.

Первый ионизатор, используемый для лечения людей, получил название люстры Чижевского , в честь советского ученого, который создал прибор, благотворно влияющий на здоровье человека.

В современных электроприборах для работы в бытовых условиях можно встретить встроенные ионизаторы в пылесосы, увлажнители воздуха, фены, сушилки…

Специальные ионизаторы воздуха очищают его состав, уменьшают количество пыли и вредных примесей.

Ионизаторы воды способны снижать количество химических реагентов в ее составе. Их используют для очистки бассейнов и водоемов, насыщая воду ионами меди или серебра, которые уменьшают рост водорослей, уничтожают вирусы и бактерии.

Электричество нас окружает со всех сторон. Но когда-то это было не так. Потому что само слово произошло от греческого названия конкретного материала: «электрон», по-гречески, «янтарь». С ним проводили занятные эксперименты, похожие на фокусы. Люди всегда любили чудеса, а тут - всякие пылинки, ворсинки, ниточки, волосинки, начинали притягиваться к кусочку янтаря, стоило только его потереть лоскутком ткани. То есть вот у камушка этого золотистого никаких «ручек» маленьких нет, а ворсинки поднимать может.

Накопление электричества и знаний о нём

Зримое накопление электричества происходило и когда надевали на себя поделки из янтаря: янтарные бусы, янтарные заколки для волос. Тут уж объяснений, кроме как явной магии , не могло быть никаких. Ведь, чтобы фокус удавался, перебирать бусы надо было исключительно чистыми сухими руками и сидя в чистой одежде. И чистые волосы, хорошо потёртые заколкой, дают нечто красивое и устрашающее: нимб торчащей кверху шевелюры. Да ещё потрескивание. Да ещё в темноте вспышки. Это же действие духа, требовательного и капризного, равно как и страшного и непонятного. Но настала пора, и электрические явления перестали быть территорией духа.

Стали всё что угодно называть просто - «взаимодействие». Вот уж тогда и начали экспериментировать. Придумали специальную машину для этого (электрофорная машина), и банку для накопления электричества (лейденская банка). И прибор, который уже мог показывать некоторое «равно-больше-меньше» в отношении электричества (электроскоп). Осталось только всё это объяснить с помощью набиравшего силу языка формул.

Так, человечество додумалось до необходимости осознания наличия в природе некоего электрического заряда. Собственно, в названии никакого открытия не содержится. Электрический - значит, связанный с явлениями, изучение которых началось с магии янтаря . Слово «заряд» говорит только о неясных возможностях, заложенных в предмет, как ядро в пушку. Просто ясно, что электричество можно как-то добывать и как-то накапливать. И как-то ого должно измеряться. Равно как и обычное вещество, например, масло.

И, по аналогии с веществами, о мельчайших частицах которых (атомах), говорили уверенно ещё со времён Демокрита , и решили, что заряд должен непременно состоять из аналогичных очень маленьких «корпускул» - телец. Количество которых в большом заряженном теле и даст величину электрического заряда.

Электрический заряд - закон сохранения заряда

Разумеется, тогда и приблизительно не могли представить, сколько таких электрических «корпускул» может оказаться хотя бы в совсем небольшом заряженном теле. Но практическая единица электрического заряда была всё-таки нужна. И её стали придумывать. Кулон, в честь кого такую единицу потом назвали, видимо измерял величины зарядов с помощью металлических шариков, с которыми проводил опыты, но как-то относительно. Открыл свой знаменитый закон Кулона , в котором алгебраически записал, что сила, действующая между двумя, разнесёнными на расстояние R зарядами q1 и q2, пропорциональна их произведению и обратно пропорциональна квадрату расстояния между ними.

Коэффициент k зависит от среды, в которой происходит взаимодействие, в вакууме же он равен единице.

Вероятно, после Кеплера и Ньютона такие вещи делать было не так уж и сложно. Расстояние измерить легко. Заряды он делил физически, прикасаясь одними шариками к другим. Получалось, что на двух одинаковых шариках, если один заряжен, а другой нет, при соприкосновении заряд делится пополам - разбегается по обоим шарикам. Так, он получал дробные значения исходной неизвестной величины q.

Изучая взаимодействие электрических зарядов , он делал замеры при разных расстояниях между шариками, фиксировал отклонения на своих крутильных весах, которое при этом получаются, когда заряженные шарики отталкиваются друг от друга. Видимо, его закон - то была чистая победа алгебры, так как единицы измерения заряда «кулон» сам Кулон не знал и знать просто не мог.

Другой победой было открытие того факта, что общее количество этой самой величины q в шариках, которые он сумел зарядить таким способом, оставалось всегда неизменным. За что открытый закон он и назвал законом сохранения заряда.

Q = q 1 + q 2 + q 3 + … + q n

Надо отдать должное аккуратности и терпению учёного, а также отваге, с которой он провозгласил свои законы, не имея единицы количества того, что изучал.

Частица электричества - минимальный заряд

Это уже потом догадались, что элементарным, то есть самым маленьким, электрическим зарядом является… электрон. Только не маленький кусочек янтаря, а невыразимо малая частица даже уже не вещества (почти), но которая обязательно есть в любом вещественном теле. И даже в каждом атоме любого вещества . И не только в атомах, но и вокруг них. И те:

  • что находятся в атомах, называются связанные электроны.
  • а которые вокруг - свободные электроны.

Связанными в атоме электроны бывают потому, что атомное ядро тоже содержит частицы заряда - протоны, и каждый протон обязательно притянет к себе электрон. Как раз по закону Кулона.

А заряд, который вы можем видеть или чувствовать получается в результате:

  • трения,
  • накопления,
  • химической реакции,
  • электромагнитной индукции,

составляют только свободные электроны, которые были выброшены из атомов по причине разных недоразумений:

  1. от удара другого атома (тепловая эмиссия)
  2. кванта ли света (фотоэмиссия) и по другим причинам

и бродящие внутри огромных макроскопических тел (например, волосинок).

Для электронов тела наших предметов действительно огромны. В одной единице заряда (кулоне) - электронов содержится примерно вот сколько: 624 150 912 514 351 000 с небольшим. Звучит это так: 624 квадриллиона 150 триллионов 912 миллиардов 514 миллионов 351 тысяча электронов в одном кулоне электрического заряда.

А кулон, это величина совсем простая и нам близкая. Кулон, это тот самый заряд, который протекает в одну секунду через сечение проводника, если ток в нём имеет силу в один ампер . То есть при 1 ампере за каждую секунду через поперечное сечение проволочки будут мелькать как раз вот эти 624 квадриллиона … электронов.

Электроны настолько подвижны, и так быстро передвигаются внутри физических тел, что включают нам электрическую лампочку в одно мгновение, как только мы нажмём на выключатель. И поэтому электрическое взаимодействие у нас такое быстрое, что каждую секунду происходят события, называемые «рекомбинация». Сбежавший электрон находит атом, из которого электрон как раз убежал, и занимает в нём свободное место.

Количество таких событий в секунду тоже порядка…, ну, все это себе уже представляют. И эти события непрерывно повторяются, когда электроны покидают атомы, потом в атомы возвращаются. Убегают — возвращаются. Такова их жизнь, без этого они просто не могут существовать. И только благодаря этому существует электричество - та система, которая стала частью нашей жизни, нашего комфорта, нашего питания и сохранения.

Направление тока. Кто у нас в заряде главный?

Только так и остался один небольшой курьёз, который все знают, но никто из физиков так и не желает исправить.

Когда Кулон фокусничал со своими шариками, видели, что заряды бывают двух видов. И заряды одного вида отталкиваются друг от друга, а заряды разных притягиваются. Естественно было назвать одни из них положительными, а другие отрицательными . И предположить, что электрический ток течёт оттуда, где больше, туда, где меньше. То есть от плюса к минусу. Так оно и закрепилось в головах физиков на многие поколения.

Но обнаружить потом удалось первыми не электроны, а ионы. Это как раз те самые безутешные атомы, потерявшие свой электрон. В ядре которых имеется «лишний» протон, и потому они заряжены. Ну а как это обнаружили, так сразу и вздохнули, и сказали - вот он, заряд ты наш положительный. И за протоном так закрепилась слава положительно заряженной частицы.

А потом догадались, что атомы чаще всего бывают нейтральными потому, что электрический заряд ядра уравновешивается зарядом электронных оболочек, вращающихся вокруг ядра. То есть построили планетарную модель атома. И только тогда поняли, что атомы составляют всё (почти) вещество, его твёрдую кристаллическую решётку, или всю массу его жидкого тела. То есть протоны с нейтронами солидно сидят в ядрах атомов. А не на побегушках, как лёгкие и подвижные электроны. Следовательно, ток бежит не от плюса к минусу, а наоборот, от минуса к плюсу.

В природе не все можно объяснить с точки зрения механики, МКТ и термодинамики, есть и электромагнитные явления, которые воздействуют на тело, при этом не зависят от их массы. Способность тел быть источником электромагнитных полей характеризуется физической скалярной величиной – электрическим зарядом. Его впервые вывели в законе Кулона в 1785 году, но обратили внимание на его существование еще до нашей эры. В этой статье мы простыми словами расскажем о том, что такое электрический заряд и как он измеряется.

История открытий

Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.

Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи. Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными». Бенджамин Франклин также исследовал этот вопрос и ввел понятия положительного и отрицательного заряда. На иллюстрации – Б. Франклин ловит молнию.

Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван . Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.

И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.

Теоретические сведения

Электрическим зарядом называется способность тел создавать электромагнитное поле. В физике раздел электростатики изучает взаимодействия неподвижных относительно выбранной инерциальной системы отчета зарядов.

В чем измеряется

Единица измерения в системе СИ называется «Кулон» – это электрический заряд, проходящий через сечение проводника 1 Ампер за 1 секунду.

Буквенное обозначение – Q или q. Может принимать как положительные, так и отрицательные значения. Название носит в честь физика Шарля Кулона, он вывел формулу для нахождения сил взаимодействия между ними, она называется «Закон Кулона»:

В ней q1, q2 – модули зарядов, r – расстояние между ними, k – коэф-т пропорциональности.

Формула похожа на закон притяжения, в принципе она и описывает подобное взаимодействие. Он имеет наименьшую массу. Его электрический заряд отрицателен и он равен:

-1.6*10^(-19) Кл

Позитрон – это противоположная величина электрону, также состоит из одного положительного элементарного заряда.

Кроме того, что он дискретен, квантуется или измеряется порциями, для него еще и справедлив Закон сохранения зарядов, который говорит о том, что в замкнутой системе могут возникать только одновременно заряды обоих знаков. Простым языком – алгебраическая (с учетом знаков) сумма зарядов частиц и тел, в замкнутой (изолированной) системе всегда остается неизменной. Он не изменяется со временем или при движении частицы, он постоянен в течение её времени жизни. Простейшие заряженные частицы условно сравнивают с электрическими зарядами.

Закон сохранения электрических зарядов впервые подтвердил Майкл Фарадей в 1843 году. Это один из фундаментальных законов физики.

Проводники, полупроводники и диэлектрики

В проводниках есть много свободных зарядов. Они свободно перемещаются по всему объему тела. В полупроводниках свободных носителей почти нет, но если передать телу небольшую энергию они образуются, в результате чего тело начинает проводить электрический ток, т.е. электрические заряды начинают движение. Диэлектриками называют вещества, где число свободных носителей минимально, поэтому ток через них протекать не может или может при определенных условиях, например, очень высокое напряжение.

В чем выражается взаимодействие

Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется. Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику. При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.

По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.

Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.

Способы измерения

Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.

Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак. Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала. Принцип его действия отражен на видео.

Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги. Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться. Величину заряда определяют по тому, насколько сильно они отклонятся.

Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.

Электрический заряд – физическая величина, которая определяет способность тела принимать участие в электромагнитных взаимодействиях. Тело, обладающее ненулевым зарядом, образует вокруг себя электрическое поле, которое взаимодействует с любым другим телом, имеющим заряд.

В чем измеряется заряд

Для того чтобы ответить на вопрос, как найти заряд, нужно знать в чем он измеряется и какие формулы применять. Заряд измеряется в кулонах (Кл). Названа единица измерения в честь Шарля Кулона – физика и инженера, сделавшего значительный вклад в развитие познаний об электричестве.

Задачи о том, как найти заряд q (этой буквой обозначается эта физическая величина), изучаются в школе в рамках электростатики – части курса физики. Главным законом электростатики является закон Кулона, который записывается математически следующим образом:

F = k (q1 * q2) / r2, (1)

где F – сила, с которой действуют друг на друга заряженные тела, q – заряды тел, r – расстояние между ними, k - коэффициент.

Если известна сила, заряд одного из тел и расстояние между ними, то задача о том, как найти электрический заряд второго тела, решается из уравнения (1) очень просто.

Какие частицы заряжены

Зарядом обладают элементарные частицы – электроны и протоны. Причём модули зарядов этих частиц одинаковы. Отличаются лишь их знаки. Каждый атом, состоит из одинакового числа этих частиц. Соответственно, суммарный заряд атома равен нулю.

Протоны (вместе с нейтронами, имеющими нулевой заряд) составляют ядро атома. Вокруг ядра на большом (по меркам размера самого ядра) расстоянии вращаются электроны. Сила, описанная формулой (1), удерживает электроны на своих орбитах. Однако атомы некоторых веществ удерживают электроны, находящие на высших энергетических уровнях (наиболее удалённые от ядра), довольно слабо, и эти электроны легко отрываются и «путешествуют» между атомами.

Если часть этих электронов отнять у одного тела и передать другому, то оба тела станут электрически заряженными. Первое получит положительный заряд (за счёт дефицита электронов), второе – отрицательный (за счёт их переизбытка). Атомы, потерявшие или получившие лишние электроны, называются ионами. Соответственно процесс отдачи или получения дополнительных электронов называется ионизацией.

В школьном курсе химии и физики также встречаются задачи о том, как находить заряд ядра атома. Сделать это очень просто: нужно умножить количество протонов, присутствующих в ядре, на заряд одного протона. Заряд протона – одна из элементарных физических констант.

Чтобы узнать количество протонов в ядре атома, следует заглянуть в таблицу Менделеева: этим числом является порядковый номер нужного вещества. Например, заряд атома цинка (который имеет в периодической таблице элементов номер 30) равен:

gzn=30*1.602*10(-19) Кл=48,06*10(-19)Кл

где, gzn- заряд атома цинка; Кл - измерение заряда в кулонах.


Close