1. Что такое пищевая сеть?

Ответ. Пищевая (трофическая) цепь - ряды видов растений, животных, грибов и микроорганизмов, которые связаны друг с другом отношениями: пища - потребитель. Пищевая сеть - система взаимосвязей между пищевыми цепями.

2. Какие организмы относятся к продуцентам?

Ответ. Продуценты - организмы, способные синтезировать органические вещества из неорганических, то есть, все автотрофы. Это, в основном, зелёные растения (синтезируют органические вещества из неорганических в процессе фотосинтеза), однако некоторые виды бактерий-хемотрофов способны на чисто химический синтез органики без солнечного света.

3. Чем консументы отличаются от продуцентов?

Вопросы после § 85

1. Что такое экологическая пирамида? Какие процессы в сообществе она отражает?

Ответ. Падение количества энергии при переходе с одного трофического уровня на другой (более высокий) определяет число этих уровней и соотношение хищников и жертв. Подсчитано, что на любой данный трофический уровень поступает около 10 % (или чуть более) энергии предыдущего уровня. Поэтому общее число трофических уровней редко бывает более четырех-шести.

Данное явление, изображенное графически, получило название экологическая пирамида. Различают пирамиду численности (особей), пирамиду биомассы и пирамиду энергии.

Основание пирамиды образуют продуценты (растения). Над ними располагаются консументы первого порядка (травоядные). Следующий уровень представляют консументы второго порядка (хищники). И так далее до вершины пирамиды, которую занимают наиболее крупные хищники. Высота пирамиды обычно соответствует длине пищевой цепи.

Пирамида биомассы показывает соотношение биомассы организмов разных трофических уровней, изображенных графически таким образом, что длина или площадь прямоугольника, соответствующего определенному трофическому уровню, пропорциональна его биомассе

2. В чем отличие пирамид численности и энергии?

Ответ. Экологические пирамиды можно отнести к трем основным типам:

Пирамиды численности, которые отражают численность отдельных организмов; пирамиды биомасс, характеризующихобщуюмассуособей каждоготрофического уровня; пирамиды продукции, характеризующие продукцию каждого трофического уровня.

Пирамиды численности, как правило, наименее информативны и показательны, поскольку численность организмов одного трофического уровня в экосистеме в значительной степени зависит от их размеров. Например, масса одной лисицы равна массе нескольких сотен мышей.

Обычно численность гетеротрофных организмов в экосистеме выше, чем автотрофных. На одном дереве (первый трофический уровень) может кормиться до нескольких тысяч насекомых (второй трофический уровень). С повышением трофического уровня гетеротрофных организмов средние размеры особей находящихся на нем обычно повышаются, а их численность снижается. Поэтому пирамиды численности в экосистемах часто имеют вид «новогодней елки».

Пирамиды биомасс гораздо лучше выражают соотношения между разными трофическими уровнями экосистемы. В целом, биомасса более низких уровней превышает биомассу более высоких. Однако из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2 – 3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

Наиболее полное представление о функциональной организации экосистем дают пирамиды продукций. При этом величины продукций каждого трофического уровня лучше представлять в единых единицах измерения, лучше всего в энергетических. В таком случае пирамиды продукций будут являться пирамидами энергий.

В противоположность пирамидам численности и биомассы, отражающим статику системы (т. е. характеризующим количество организмов в данный момент времени), пирамиды продукции характеризуют скорости прохождения энергии пищи по трофическим цепям. Если правильно учтены все величины поступления и расхода энергии в трофической цепи, то в соответствии со вторым законом термодинамики пирамиды продукции всегда будут иметь правильную форму.

Численность и биомасса организмов, которые может поддерживать какой-либо уровень в тех или иных условиях зависит не от количества фиксированной энергии, имеющейся в данный момент на предыдущем уровне (т. е. от биомассы последнего), а от скорости продуцирования пищи на нем.

3. Почему пирамида численности может быть прямой и перевернутой?

Ответ. Если скорость воспроизводства популяции жертвы высока, то даже при низкой биомассе такая популяция может быть достаточным источником пищи для хищников, имеющих более высокую биомассу, но низкую скорость воспроизводства. По этой причине пирамиды численности или биомассы могут быть перевернутыми, т. е. низкие трофические уровни могут иметь меньшие плотность и биомассу, чем более высокие уровни.

Например, на одном дереве могут жить и кормиться множество насекомых (перевернутая пирамида численности). Перевернутая пирамида биомассы свойственна морским экосистемам, где первичные продуценты (фитопланктонные водоросли) очень быстро делятся, а их потребители (зоопланктонные ракообразные) гораздо крупнее, но размножаются значительно медленнее. Морские позвоночные имеют еще большую массу и длительный цикл воспроизводства.

Рассчитайте долю энергии, поступившей на 5-й трофический уровень, при условии, что ее общее количество на 1-м уровне составляло 500 единиц.

Ответ. Первый уровень – 500, второй – 50, третий – 5, четвертый - 0,5, пятый - 0,05 единиц.

Министерство образования и науки Российской федерации

Национальный исследовательский

Иркутский государственный технический университет

Заочно-вечерний факультет

Кафедра общеобразовательных дисциплин


Контрольная работа по Экологии


выполнил: Яковлев В.Я

№ зачетной книжки: 13150837

группа: ЭПбз-13-2


Иркутск 2015


1. Дайте понятие экологического фактора. Классификация экологических факторов

2. Экологические пирамиды и их характеристика

3. Что называют биологическим загрязнением окружающей среды?

4. Какие существуют виды ответственности должностных лиц за экологические нарушения?

Список литературы


1. Дайте понятие экологического фактора. Классификация экологических факторов


Среда обитания - это та часть природы, которая окружает живой организм и с которой он непосредственно взаимодействует. Составные части и свойства среды многообразны и изменчивы. Любое живое существо живет в сложном меняющемся мире, постоянно приспосабливаясь к нему и регулируя свою жизнедеятельность в соответствии с его изменениями.

Отдельные свойства или части среды, воздействующие на организмы, называются экологическими факторами. Факторы среды многообразны. Они могут быть необходимы или, наоборот, вредны для живых существ, способствуют или препятствуют их выживанию и размножению. Экологические факторы имеют разную природу и специфику действия.

Абиотические факторы - температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды, ветер, течения, рельеф местности - это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы. Среди них различают:

Физические факторы - такие факторы, источником которых служит физическое состояние или явление (например, температура, давление, влажность, движение воздуха и др.).

Химические факторы - такие факторы, которые обусловлены химическим составом среды (соленость воды, содержание кислорода в воздухе и др.).

Эдафические факторы (почвенные) - совокупность химических, физических, механических свойств почв и горных пород, оказывающих воздействие как на организмы, для которых они являются средой обитания, так и на корневую систему растений (влажность, структура почвы, содержание биогенных элементов и др.).

Биотические факторы - это все формы воздействия живых существ друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других, вступает в связь с представителями своего вида и других видов - растениями, животными, микроорганизмами - зависит от них и сам оказывает на них воздействие. Окружающий органический мир - составляющая часть среды каждого живого существа.

Антропогенные факторы - это все формы деятельности человеческого общества, которые приводят к изменению природы, как среды обитания других видов, или непосредственно сказываются на их жизни. В ходе истории человечества, развитие сначала охоты, а затем сельского хозяйства, промышленности, транспорта сильно изменило природу нашей планеты. Значение антропогенных воздействий на весь живой мир Земли продолжает стремительно возрастать.

Выделяют следующие группы антропогенных факторов:

Изменение структуры земной поверхности;

Изменение состава биосферы, круговорота и баланса входящего в нее вещества;

Изменение энергетического и теплового баланса отдельных участков и регионов;

Изменения, вносимые в биоту.

Условия существования - это совокупность необходимых для организма элементов среды, с которыми он находится в неразрывном единстве и без которых существовать не может. Элементы среды, необходимые организму или отрицательно на него воздействующие, называются экологическими факторами. В природе эти факторы действуют не изолировано друг от друга, а в виде сложного комплекса. Комплекс экологических факторов, без которых организм существовать не может, и представляет собой условия существования этого организма.

Все приспособления организмов к существованию в различных условиях выработались исторически. В результате сформировались специфичные для каждой географической зоны группировки растений и животных.

Экологические факторы:

Элементарные - свет, тепло, влага, пища и так далее;

Комплексные;

Антропогенные;

Влияние экологических факторов на живые организмы характеризуется некоторыми количественными и качественными закономерностями. Немецкий агрохимик Ю. Либих, наблюдая за влиянием на растения химических удобрений, обнаружил, что ограничение дозы любого из них ведет к замедлению роста. Эти наблюдения позволили ученому сформулировать правило, которое носит название закона минимума (1840 г.).


2. Экологические пирамиды и их характеристика


Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.


Типы экологических пирамид

Пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.


Пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м2, кг/га, т/км2 или на объем - г/м3 (рис.4)

Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.


Пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Рассмотрим превращение энергии в экосистеме на примере простой пастбищной трофической цепи, в которой имеется всего три трофических уровня.

уровень - травянистые растения,

уровень - травоядные млекопитающие, например, зайцы

уровень - хищные млекопитающие, например, лисы

Питательные вещества создаются в процессе фотосинтеза растениями, которые из неорганических веществ (вода, углекислый газ, минеральные соли и т.д.) с использованием энергии солнечного света образуют органические вещества и кислород, а также АТФ. Часть электромагнитной энергии солнечного излучения при этом переходит в энергию химических связей синтезируемых органических веществ.

Все органическое вещество, создаваемое в процессе фотосинтеза называется валовой первичной продукцией (ВПП). Часть энергии валовой первичной продукции расходуется на дыхание, в результате чего образуется чистая первичная продукция (ЧПП), которая и является тем самым веществом, которое поступает на второй трофический уровень и используется зайцами.

Пусть ВПП составляет 200 условных единиц энергии, а затраты растений на дыхание (R) - 50%, т.е. 100 условных единиц энергии. Тогда чистая первичная продукция будет равна: ЧПП = ВПП - R (100 = 200 - 100), т.е. на второй трофический уровень к зайцам поступит 100 условных единиц энергии.

Однако, в силу разных причин зайцы способны потребить лишь некоторую долю ЧПП (в противном случае исчезли бы ресурсы для развития живой материи), существенная же ее часть, в виде отмерших органических остатков (подземные части растений, твердая древесина стеблей, ветвей и т.д.) не способна поедаться зайцами. Она поступает в детритные пищевые цепи и (или) подвергается разложению редуцентами (F). Другая часть идет на построение новых клеток (численность популяции, прирост зайцев - Р) и обеспечение энергетического обмена или дыхания (R).

В этом случае, согласно балансовому подходу, балансовое равенство расхода энергии (С) будет выглядеть следующим образом: С = Р + R + F, т.е. поступившая на второй трофический уровень энергия будет израсходована, согласно закону Линдемана, на прирост популяции - Р - 10%, остальные 90% будут израсходованы на дыхание и удаление неусвоенной пищи.

Таким образом, в экосистемах с повышением трофического уровня происходит быстрое уменьшение энергии, накапливаемой в телах живых организмов. Отсюда ясно почему каждый последующий уровень всегда будет меньше предыдущего и почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей: к конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой потоки вещества и энергии в биогеоценозе, основу его функциональной организации.


3. Что называют биологическим загрязнением окружающей среды?


Экология является теоретической основой рационального природоиспользования, ей принадлежит ведущая роль в разработке стратегии взаимоотношений природы и человеческого общества. Промышленная экология рассматривает нарушение природного равновесия в результате хозяйственной деятельности. При этом наиболее значительным по своим последствиям является загрязнение окружающей среды. Под термином «окружающая среда» принято понимать все то, что прямо или косвенно воздействует на жизнь и деятельность человека.

По-новому следует оценивать и роль дрожжей в природных экосистемах. Например, считавшиеся долго безвредными комменсалами многие эпифитные дрожжи, обильно обсеменяющие зеленые части растений, могут оказаться не такими уж «невинными», если учесть, что они представляют собой лишь гаплоидную стадию в жизненном цикле организмов, близко родственных фитопатогенным головневым или ржавчинным грибам. И, наоборот, патогенные для человека дрожжи, вызывающие опасные и трудноизлечимые болезни - кандидоз и криптококкоз - в природе имеют сапротрофную стадию и легко выделяются из мертвых органических субстратов. Из этих примеров видно, что для понимания экологических функций дрожжей необходимо изучение полных жизненных циклов каждого вида. Обнаружены и автохтонные почвенные дрожжи с особыми функциями, важными для образования почвенной структуры. Неисчерпаемы по многообразию и связи дрожжей с животными, особенно с беспозвоночными.

Загрязнение атмосферы может быть связано с естественными процессами: извержением вулканов, пыльными бурями, лесными пожарами.

Кроме того, атмосфера загрязняется в результате производственной деятельности человека.

Источниками загрязнения воздуха является дымовые выбросы промышленных предприятий. Выбросы бывают организованными и неорганизованными. Выбросы, поступающие из труб промышленных предприятий, является специально направленными, организованными. До того как поступить в трубу, они проходят через очистные сооружения, в которых осуществляется поглощение части вредных веществ. Из окон, дверей, вентиляционных отверстий производственных зданий в атмосферу поступают неорганизованные выбросы. Основными загрязняющими веществами в выбросах являются твердые частицы (пыль, сажа) и газообразные вещества (окись углерода, двуокись серы, окислы азота).

Селекция и идентификация микроорганизмов с полезными для определенного производства свойствами является весьма актуальной с экологической точки работой, так как их использование может интенсифицировать процесс или более полно использовать компоненты субстрата.

Сущность методов биоремедиации, биологической очистки, биопереработки и биомодификации заключается в использовании в окружающей среде различных биологических агентов, в первую очередь микроорганизмов. При этом можно применять как микроорганизмы, полученные традиционными методами селекции, так и созданные с помощью генной инженерии, а также трансгенные растения, которые могут влиять на биологическое равновесие природных экосистем.

В окружающей среде могут присутствовать промышленные штаммы различных микроорганизмов - продуцентов биосинтеза тех или иных веществ, а также продукты их метаболизма, которые выступают как биологический фактор загрязнения. Действие его может заключаться в изменении структуры биоценозов. Косвенные эффекты биологического загрязнения проявляются, например, при использовании антибиотиков и других лекарственных средств в медицине, когда появляются штаммы микроорганизмов, устойчивые к их действию и опасные для внутренней среды человека; в виде осложнений при использовании вакцин и сывороток, содержащих примеси веществ биологического происхождения; как аллергенное и генетическое действие микроорганизмов и продуктов их метаболизма.

Биотехнологические крупнотоннажные производства являются источником эмиссии биоаэрозолей, содержащих клетки непатогенных микроорганизмов, а также продукты их метаболизма. Основные источники биоаэрозолей, содержащих живые клетки микроорганизмов, - стадии ферментации и сепарации, а инактивированных клеток - стадия сушки. При массированном выбросе микробная биомасса, попадая в почву или в водоем, изменяет распределение потоков энергии и вещества в трофических цепях питания и влияет на структуру и функцию биоценозов, снижает активность самоочищения и, следовательно, влияет на глобальную функцию биоты. При этом возможно провоцирование активного развития определенных организмов, в том числе микроорганизмов санитарно-показательных групп.

Динамика интродуцированных популяций и показатели их биотехнологического потенциала зависят от вида микроорганизма, состояния почвенной микробной системы в момент интродукции, этапа микробной сукцессии, дозы внесенной популяции. При этом последствия внедрения микроорганизмов, новых для почвенных биоценозов, могут быть неоднозначными. Вследствие самоочищения элиминируется не всякая интродуцированная в почву микробная популяция. Характер популяционной динамики интродуцируемых микроорганизмов зависит от степени их приспособленности к новым условиям. Неприспособленные популяции погибают, приспособленные сохраняются.

Биологический фактор загрязнения можно определить как совокупность биологических компонентов, воздействие которых на человека и окружающую среду связано с их способностью размножаться в естественных или искусственных условиях, продуцировать биологически активные вещества, а при их попадании или продуктов их жизнедеятельности в окружающую среду оказывать неблагоприятные воздействия на окружающую среду, людей, животных, растения.

Биологические факторы загрязнения (чаще всего микробные) можно классифицировать следующим образом: живые микроорганизмы с природным геномом, не обладающие токсичностью, сапрофиты, живые микроорганизмы с природным геномом, обладающие инфекционной активностью, патогенные и условно-патогенные, вырабатывающие токсины, живые микроорганизмы, получаемые методами генной инженерии (генетически модифицированные микроорганизмы, содержащие чужие гены или новые комбинации генов - ГММО), инфекционные и другие вирусы, токсины биологического происхождения, инактивированные клетки микроорганизмов (вакцины, пыль термически инактивированной биомассы микроорганизмов кормового и пищевого назначения), продукты метаболизма микроорганизмов, органеллы и органические соединения клетки - продукты ее фракционирования.

Целью нашей работы явилось выделение и идентификация дрожжевых микроорганизмов в лаборатории биотехнологии Горского ГАУ, относящихся к первой группе выше перечисленных организмов. Так как это микроорганизмы с природным геномом и не обладающие токсичностью, то их воздействие на окружающую среду весьма органично и не значительно.

Источниками микроорганизмов, включая условно-патогенные и патогенные, являются сточные воды (хозяйственно-фекальные, производственные, городские ливневые стоки). В сельских районах фекальные загрязнения поступают со стоками населенных мест, с пастбищ, загонов для скота и птиц и от диких животных. В процессе обработки сточных вод количество патогенных микроорганизмов в них снижается. Масштабы их действия на окружающую среду незначительны, тем не менее поскольку этот источник эмиссии микробных клеток существует, его необходимо учитывать как фактор загрязнения окружающей среды.

Вода, используемая в процессе выполнения нашей работы для приготовления сред, смывов, обогрева автоклава и термостатов может быть очищена на городских очистных сооружениях вместе с городскими сточными водами аэробным или анаэробным способом.

Биологические загрязнители по экологическим свойствам существенно отличаются от химических. По химическому составу техногенные биологические загрязнения тождественны природным компонентам, они включаются в природный круговорот веществ и трофические цепи питания без аккумулирования в окружающей среде.

Все микробиологические и вирусологические лаборатории должны быть оснащены приемником сточных вод, где собирающиеся стоки перед сбросом в городскую канализацию обязательно обезвреживаются химическим, физическим или биологическим методом либо комбинированным способом.


4. Какие существуют виды ответственности должностных лиц за экологические нарушения?


Эколого-правовая ответственность является разновидностью общеюридической ответственности, но в то же время отличается от иных видов юридической ответственности.

Эколого-правовая ответственность рассматривается в трех взаимосвязанных аспектах:

как государственное принуждение к исполнению требований, предписанных законодательством;

как правоотношение между государством (в лице его органов) и правонарушителями (которые подвергаются санкциям);

как правовой институт, т.е. совокупность юридических норм, различных отраслей права (земельного, горного, водного, лесного, природоохранного и др.). Экологические правонарушения наказываются в соответствии с требованиями законодательства Российской Федерации. Конечная цель экологического законодательства и каждой отдельной его статьи заключается в охране от загрязнения, обеспечении правомерного использования окружающей среды и ее элементов, охраняемых законом. Сферой действия экологического законодательства являются окружающая среда и ее отдельные элементы. Предметом правонарушения признается элемент окружающей среды. Требования закона предполагают установление четкой причинной связи между допущенным нарушением и ухудшением окружающей среды.

Субъектом экологических правонарушений является лицо, достигшее 16-летнего возраста, на которое нормативно-правовыми актами возложены соответствующие должностные обязанности (соблюдение правил охраны окружающей среды, контроль за соблюдением правил), либо любое лицо, достигшее 16-летнего возраста, нарушившее требования экологического законодательства.

Для экологического правонарушения характерно наличие трех элементов:

противоправность поведения;

причинение экологического вреда (или реальная угроза) либо нарушение иных законных прав и интересов субъекта экологического права;

причинная связь между противоправным поведением и нанесенным экологическим вредом или реальной угрозой причинения такого вреда либо нарушением иных законных прав и интересов субъектов экологического права.

Ответственность за экологические правонарушения служит одним из основных средств обеспечения выполнения требований законодательства по охране окружающей среды и использованию природных ресурсов. Эффективность действия данного средства во многом зависит, прежде всего, от государственных органов, уполномоченных применять меры юридической ответственности к нарушителям экологического законодательства. В соответствии с российским законодательством в области охраны окружающей среды должностные лица и граждане за экологические правонарушения несут дисциплинарную, административную, уголовную, гражданско-правовую, материальную ответственность, а предприятия - административную и гражданско-правовую.

Дисциплинарная ответственность наступает за невыполнение планов и мероприятий по охране природы и рациональному использованию природных ресурсов, за нарушение экологических нормативов и иных требований природоохранительного законодательства, вытекающих из трудовой функции или должностного положения. Дисциплинарную ответственность несут должностные лица и иные виновные работники предприятий и организаций в соответствии с положениями, уставами, правилами внутреннего распорядка и другими нормативными актами (ст. 82 Закона «Об охране окружающей природной среды»). К нарушителям в соответствии с Кодексом законов о труде (с изменениями и дополнениями от 25 сентября 1992 г.) могут быть применены следующие дисциплинарные взыскания: замечание, выговор, строгий выговор, увольнение с работы, другие наказания (ст. 135).

Материальная ответственность также регулируется Кодексом законов о труде РФ (ст. 118-126). Такую ответственность несут должностные лица и иные работники предприятия, по вине которых предприятие понесло расходы по возмещению вреда, причиненного экологическим правонарушением.

Применение административной ответственности регулируется как природоохранительным законодательством, так и Кодексом РСФСР об административных правонарушениях 1984 г. (с изменениями и дополнениями). Закон «Об охране окружающей природной среды» расширил перечень составов экологических правонарушений, при совершении которых виновные должностные, физические и юридические лица несут административную ответственность. Такая ответственность наступает за превышение предельно допустимых выбросов и сбросов вредных веществ в окружающую среду, невыполнение обязанностей по проведению государственной экологической экспертизы и требований, содержащихся в заключении экологической экспертизы, предоставление заведомо неправильных и необоснованных заключений, несвоевременное предоставление информации и предоставление искаженной информации, отказ от предоставления своевременной, полной, достоверной информации о состоянии природной среды и радиационной обстановке и т.д.

Конкретный размер штрафа определяется органом, налагающим штраф, в зависимости от характера и вида правонарушения, степени вины правонарушителя и причиненного вреда. Административные штрафы налагаются уполномоченными на то государственными органами в области охраны окружающей среды, санитарно-эпидемиологического надзора РФ. При этом постановление о наложении штрафа может быть обжаловано в суд или арбитражный суд. Наложение штрафа не освобождает виновных от обязанности возмещения причиненного вреда (ст. 84 Закона «Об охране окружающей природной среды»).

В новом Уголовном кодексе РФ экологические преступления выделены в отдельную главу (гл. 26). В нем предусмотрена уголовная ответственность за нарушение правил экологической безопасности при производстве работ, нарушение правил хранения, утилизации экологически опасных веществ и отходов, нарушение правил безопасности при обращении с микробиологическими или другими биологическими агентами или токсинами, загрязнение вод, атмосферы и моря, нарушение законодательства о континентальном шельфе, порчу земли, незаконную добычу водных животных и растений, нарушение правил охраны рыбных запасов, незаконную охоту, незаконную порубку деревьев и кустарников, уничтожение или повреждение лесных массивов.

Применение мер дисциплинарной, административной или уголовной ответственности за экологические правонарушения не освобождает виновных лиц от обязанности возмещения вреда, причиненного экологическим правонарушением. Закон «Об охране окружающей природной среды» стоит на той позиции, что предприятия, организации и граждане, причиняющие вред окружающей среде, здоровью или имуществу граждан, народному хозяйству загрязнением окружающей среды, порчей, уничтожением, повреждением, нерациональным использованием природных ресурсов, разрушением естественных экологических систем и другими экологическими правонарушениями, обязаны возместить его в полном объеме в соответствии с действующим законодательством (ст. 86).

Гражданско-правовая ответственность в сфере взаимодействия общества и природы заключается главным образом в возложении на правонарушителя обязанности возместить потерпевшей стороне имущественный или моральный вред в результате нарушения правовых экологических требований.

Ответственность за экологические правонарушения выполняет ряд основных функций:

стимулирующую к соблюдению норм права окружающей среды;

компенсаторную, направленную на возмещение потерь в природной среде, возмещение вреда здоровью человека;

превентивную, заключающуюся в наказании лица, виновного в совершении экологического правонарушения.

Экологическое законодательство предусматривает три уровня наказания: за нарушение; нарушение, повлекшее значительный ущерб; нарушение, повлекшее смерть человека (тяжкие последствия). Смерть человека вследствие экологического преступления оценивается законом как неосторожность (совершенное по небрежности или легкомыслию). Видами наказаний при экологических нарушениях могут быть штраф, лишение права занимать определенные должности, лишение права заниматься определенной деятельностью, исправительные работы, ограничение свободы, лишение свободы.

Одним из самых тяжких экологических преступлений является экоцид - массовое уничтожение растительного мира (растительных сообществ земли России или отдельных ее регионов) или животного мира (совокупность живых организмов всех видов диких животных, населяющих территорию России или определенный ее регион), отравление атмосферы и водных ресурсов (поверхностные и подземные воды, которые используются или могут быть использованы), а также совершение иных действий, способных вызвать экологическую катастрофу. Общественная опасность экоцида состоит в угрозе или нанесении огромного вреда окружающей природной среде, сохранению генофонда народа, животного и растительного мира.

Экологическая катастрофа проявляется в серьезном нарушении экологического равновесия в природе, разрушении устойчивого видового состава живых организмов, полном или существенном сокращении их численности, в нарушении циклов сезонных изменений биотического кругооборота веществ и биологических процессов. Мотивом экоцида может быть ложно понятые интересы военного или государственного характера, совершение действий с прямым или косвенным умыслом.

Успех в наведении экологического правопорядка достигается постепенным наращиванием общественного и государственного воздействия на злостных правонарушителей, оптимальным сочетанием воспитательных, экономических и правовых мер.

экологический загрязнение правонарушение


Список литературы


1. Акимова Т.В. Экология. Человек-Экономика-Биота-Среда: Учебник для студентов вузов/ Т.А.Акимова, В.В.Хаскин; 2-е изд., перераб. и дополн.- М.: ЮНИТИ, 2009.- 556 с.

Акимова Т.В. Экология. Природа-Человек-Техника.: Учебник для студентов техн. направл. и специал. вузов/ Т.А. Акимова, А.П. Кузьмин, В.В. Хаскин..- Под общ. ред. А.П.Кузьмина. М.: ЮНИТИ-ДАНА, 2011.- 343 с.

Бродский А.К. Общая экология: Учебник для студентов вузов. М.: Изд. Центр «Академия», 2011. - 256 с.

Воронков Н.А. Экология: общая, социальная, прикладная. Учебник для студентов вузов. М.: Агар, 2011. - 424 с.

Коробкин В.И. Экология: Учебник для студентов вузов/ В.И. Коробкин, Л.В. Передельский. -6-е изд., доп. И перераб.- Ростон н/Д: Феникс, 2012.- 575с.

Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. Экорлогия. 2-е изд. Учебник для вузов. М.: Дрофа, 2008. - 624 с.

Стадницкий Г.В., Родионов А.И. Экология: Уч. пособие для стут. химико-технол. и техн. сп. вузов./ Под ред. В.А. Соловьева, Ю.А. Кротова.- 4-е изд., испр. - СПб.: Химия, 2012. -238с.

Одум Ю. Экология т.т. 1,2. Мир,2011.

Чернова Н.М. Общая экология: Учебник для студентов педагогических вузов/ Н.М. Чернова, А.М. Былова. - М.: Дрофа, 2008.-416 с.

Экология: Учебник для студентов высш. и сред. учеб. заведений, обуч. по техн. спец. и направлениям/Л.И. Цветкова, М.И. Алексеев, Ф.В. Карамзинов и др.; под общ. ред. Л.И. Цветковой. М.: АСБВ; СПб.: Химиздат, 2012.- 550 с.

Экология. Под ред. проф. В.В. Денисова. Ростов-н/Д.: ИКЦ «МарТ», 2011. - 768 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Каждая экосистема состоит из нескольких трофических (пищевых) уровней , слагающихся в определенную структуру. Трофическую структуру принято изображать в видеэкологических пирамид.

В 1927 году американский эколог и зоолог Чарлз Элтон предложил графическую модель экологической пирамиды. Базой пирамиды является первый трофический уровень, состоящий из продуцентов. Выше расположены уровни консументов различных порядков. Иначе говоря, глядя на экологическую пирамиду, мы понимаем, как в данной экосистеме соотносятся все ее члены по нескольким факторам.

Изображаются уровни экологической пирамиды в виде нескольких прямоугольных или трапециевидных ярусов, размер которых соотнесен либо с количеством участников каждого уровня пищевой цепи, либо с их массой, либо с энергией.

Три вида экологических пирамид

1. Пирамида чисел (или численности) сообщает нам количество живых организмов на каждом уровне. Например, для пропитания одной совы необходимо 12 мышей, а им, в свою очередь, требуется 300 колосьев ржи. Нередко случается, что пирамида чисел перевернута (такую пирамиду иначе называют обращенной). Она может описывать, скажем, лесную пищевую цепь, в которой продуцентами выступают деревья, а первичными консументами - насекомые. Одно дерево является пищей для мириадов насекомых.

2. Пирамида биомасс описывает соотношение масс организмов нескольких трофических уровней. Как правило, в биоценозах на суше масса продуцентов значительно больше, нежели в каждом последующем звене пищевой цепи, а масса консументов первого уровня превышает массу консументов второго уровня и т. д.

Водные экосистемы также могут характеризоваться перевернутыми пирамидами биомасс, в которых масса консументов оказывается большей, чем масса продуцентов. Океанический зоопланктон, питающийся фитопланктоном, намного превышает его по совокупной массе. Казалось бы, с такой скоростью поглощения, фитопланктон должен был бы исчезнуть, однако, его спасает высокая скорость роста.

3. Пирамида энергии исследует величину потока энергии, проходящего через пищевую цепь от базового уровня к наивысшему. Структура биоценоза в высокой степени зависит от скорости продуцирования пищи на всех трофических уровнях. Американский ученый Раймонд Линдеман выяснил, что на каждом уровне теряется до 90% поступившей на него энергии (так называемый «Закон 10%»).

Зачем нужны экологические пирамиды?

Пирамиды чисел и биомассописывают экосистему в ее статике, поскольку рассчитывают количество или массу участников экосистемы за фиксированный временной отрезок. Они не призваны давать информацию о трофической структуре экосистемы в динамике, однако же позволяют решать задачи, связанные с сохранением устойчивости экосистемы, и предвидеть возможные опасности.

Классический пример нарушения устойчивости - завоз кроликов на Австралийский континент. Из-за высокой скорости размножения их количество стало столь огромным, что наносило вред сельскому хозяйству, лишая пищи овец и крупный скот - таким образом, только один вид консументов (кролики) монополизировал продуцент (траву) в данной экосистеме.

Пирамида энергии , в отличие от вышеназванных пирамид, динамична, она передает скорость прохождения количества энергии через все трофические уровни. Ее задача - дать представление о функциональной организации экосистемы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Министерство образования и науки молодежи и спорта Украины

НТУ «ХПИ»

Кафедра «Ораны труда и окружаешей среды»

Реферат

по теме: «Экологические пирамиды»

Выполнила: ст. гр. МТ-30б

Мазанова Дарья

Проверил: проф. Древаль А. Н.

г. Харьков

Вступление

1. Пирамиды численности

2. Пирамиды биомассы

3. Пирамиды энергии

Заключение

Список литературы

Вступление

Экологическая пирамида -- графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников, видов, питающихся другими хищниками) в экосистеме. Эффект пирамид в виде графических моделей разработан в 1927 году Ч. Элтоном.

Правило экологической пирамилы заключается в том, что количество растительного вещества, служащего основой цепи питания, примерно в 10 раз больше, чем масса растительноядных животных, и каждый последующий пищевой уровень также имеет массу, в 10 раз меньшую. Это правило известно как правило Линдемана или правило 10%.

Цепь взаимосвязанных видов, последовательно извлекающих органическое вещество и энергию из исходного пищевого вещества. Каждое предыдущее звено цепи питания является пищей для следующего звена.

Приведем простой пример экологической пирамиды:

Пусть одного человека в течение года можно прокормить 300 форелями. Для их питания требуется 90 тысяч головастиков лягушек. Чтобы прокормить этих головастиков, необходимы 27 000 000 насекомых, которые потребляют за год 1 000 тонн травы. Если человек будет питаться растительной пищей, то все промежуточные ступени пирамиды можно выкинуть и тогда 1 000 т биомассы растений сможет прокормить в 1 000 раз больше людей.

1. Пирамиды численности

Для изучения взаимоотношений между организмами в экосистеме и для графического представления этих взаимоотношений удобнее использовать не схемы пищевых сетей, а экологические пирамиды. При этом сначала подсчитывают число различных организмов на данной территории, сгруппировав их по трофическим уровням.

После таких подсчетов становится очевидным, что численность животных прогрессивно уменьшается при переходе от второго трофического уровня к последующим. Численность растений первого трофического уровня тоже нередко превосходит численность животных, составляющих второй уровень. Это можно отобразить в виде пирамиды численности.

Для удобства количество организмов на данном трофическом уровне может быть представлено в виде прямоугольника, длина (или площадь) которого пропорциональна числу организмов, обитающих на данной площади (или в данном объеме, если это водная экосистема

2. Пирамиды биомассы

Неудобств, связанных с использованием пирамид численности, можно избежать путем построения пирамид биомассы, в которых учитывается суммарная масса организмов (биомассы) каждого трофического уровня.

Определение биомассы включает не только учет численности, но и взвешивание отдельных особей, так что это более трудоемкий процесс, требующий больше времени и специального оборудования.

Таким образом, прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема.

При отборе образцов, иными словами, в данный момент времени всегда определяется так называемая биомасса на корню, или урожай на корню. Важно понимать, что эта величина не содержит никакой информации о скорости образования биомассы (продуктивности) или ее потребления; иначе могут возникнуть ошибки по двум причинам:

1. Если скорость потребления биомассы (потеря вследствие поедания) примерно соответствует скорости ее образования, то урожай на корню не обязательно свидетельствует о продуктивности, т. е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой за данный период времени, например за год.

Так, на плодородном, интенсивно используемом пастбище урожай трав на корню может быть ниже, а продуктивность выше, чем на менее плодородном, но мало используемом для выпаса.

2. Продуцентом небольших размеров, таким как водоросли, свойственна высокая скорость возобновления, т. е. высокая скорость роста и размножения, уравновешенная интенсивным потреблением их в пищу другими организмами и естественной гибелью.

Таким образом, хотя биомасса на корню может быть малой по сравнению с крупными продуцентами (например, деревьями), продуктивность может быть не меньшей, поскольку деревья накапливают биомассу в течение длительного времени.

Иными словами, фитопланктон с такой же продуктивностью, как у дерева, будет иметь намного меньшую биомассу, хотя он мог бы поддержать жизнь такой же массы животных.

Вообще же популяции крупных и долговечных растений и животных обладают меньшей скоростью обновления по сравнению с мелкими и короткоживущими, и аккумулируют вещество и энергию в течение более длительного времени.

Зоопланктон обладает большей биомассой, чем фитопланктон, которым он питается. Это характерно для планктонных сообществ озер и морей в определенное время года; биомасса фитопланктона превышает биомассу зоопланктона во время весеннего «цветения», но в другие периоды возможно обратное соотношение. Подобных кажущихся аномалий можно избежать, применяя пирамиды энергии.

3. Пирамиды энергии

экосистема популяция биомасса

Организмы в экосистеме связаны общностью энергии и питательных веществ. Всю экосистему можно уподобить единому механизму, потребляющему энергию и питательные вещества для совершения работы. Питательные вещества первоначально происходят из абиотического компонента системы, в который в конце концов и возвращаются либо в качестве отходов жизнедеятельности, либо после гибели и разрушения организмов. Таким образом в экосистеме происходит круговорот питательных веществ, в котором участвуют и живой, и неживой компоненты. Движущей силой этих круговоротов служит, в конечном счете, энергия Солнца. Фотосинтезирующие организмы непосредственно используют энергию солнечного света и затем передают ее другим представителям биотического компонента.

В итоге создается поток энергии и питательных веществ через экосистему. Энергия может существовать в виде различных взаимопревращаемых форм, таких как механическая, химическая, тепловая и электрическая энергия. Переход одной формы в другую называется преобразованием энергии. В отличие от потока веществ в экосистеме, носящего циклический характер, поток энергии напоминает улицу с односторонним движением. В экосистемы энергия поступает от Солнца и, постепенно переходя из одной формы в другую, рассеивается в виде тепла, теряясь в бесконечном космическом пространстве.

Необходимо еще отметить, что климатические факторы абиотического компонента, такие как температура, движение атмосферы, испарение и осадки, тоже регулируются поступлением солнечной энергии. Таким образом, все живые организмы это преобразователи энергии, и каждый раз, когда происходит превращение энергии, часть ее теряется в виде тепла. В конце концов, вся энергия, поступающая в биотический компонент экосистемы, рассеивается в виде тепла. В 1942 г. Р. Линдеман сформулировал закон пирамиды энергий, или закон (правило) 10 %, согласно которому с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по «лестнице»: продуцент консумент редуцент) в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии.

Обратный поток, связанный с потреблением веществ и продуцируемой верхним уровнем экологической пирамиды энергией более низким ее уровням, например от животных к растениям, намного слабее не более 0,5 % (даже 0,25 %) от общего ее потока, и потому говорить о круговороте энергии в биоценозе не приходится. Если энергия при переходе на более высокий уровень экологической пирамиды десятикратно теряется, то накопление ряда веществ, в том числе токсичных и радиоактивных, в примерно такой же пропорции увеличивается.

Этот факт фиксирован в правиле биологического усиления. Оно справедливо для всех ценозов. При неизменном энергетическом потоке в пищевой сети или цепи более мелкие наземные организмы с высоким удельным метаболизмом создают относительно меньшую биомассу, чем крупные.

Поэтому из-за антропогенного нарушения природы происходит измельчение «средней» особи живого на суше крупные звери и птицы истребляются, вообще все крупные представители растительного и животного царства все больше и больше делаются раритетами. Это неминуемо должно вести к общему снижению относительной продуктивности организмов суши и термодинамическому разладу в биосистемах, в том числе сообществ и биоценозов.

Исчезновение видов, составленных крупными особями, меняет вещественно-энергетическую структуру ценозов. Поскольку энергетический поток, проходящий через биоценоз и экосистему, в целом практически не меняется (иначе бы произошла смена типа ценоза), включаются механизмы биоценотического, или экологического, дублирования: организмы одной трофической группы и уровня экологической пирамиды закономерно замещают друг друга. Причем мелкий вид встает на место крупного, эволюционно ниже организованный вытесняет более высокоорганизованный, более генетически подвижный приходит на смену менее генетически изменчивому. Так, при истреблении копытных в степи их заменяют грызуны, а в ряде случаев растительноядные насекомые.

Иными словами, именно в антропогенном нарушении энергетического баланса природных степных экосистем следует искать одну из причин участившихся нашествий саранчи. При отсутствии хищников на водоразделах Южного Сахалина в бамбучниках их роль выполняет серая крыса.

Возможно, таков же механизм возникновения новых инфекционных заболеваний человека. В одних случаях возникает совершенно новая экологическая ниша, а в других борьба с заболеваниями и уничтожение их возбудителей освобождает такую нишу в человеческих популяциях. Еще за 13 лет до открытия ВИЧ была предсказана вероятность появления «гриппоподобного заболевания с высокой летальностью».

Заключение

Очевидно, что системы, противоречащие естественным принципам и законам, неустойчивы. Попытки сохранить их становятся все более дорогостоящими и сложными, и в любом случае обречены на неудачу.

Изучая законы функционирования экосистем, мы имеем дело с потоком энергии, проходящих через ту или иную экосистему. Скорость накопления энергии в форме органического вещества, которое может быть использовано в пищу, важный параметр, т. к. им определяется общий поток энергии через биотический компонент экосистемы, а значит и количество (биомасса) животных организмов, которые могут существовать в экосистеме.

«Получение урожая» означает изъятие из экосистемы тех организмов или их частей, которые используются в пищу (или для иных целей). При этом желательно, чтобы экосистема производила пригодную для пищи продукцию наиболее эффективно. Рациональное природопользование единственный выход из ситуации.

Общая задача рационального управления природными ресурсами состоит в выборе наилучших, или оптимальных, способов эксплуатации естественных и искусственных (например, в сельском хозяйстве) экосистем. Причем под эксплуатацией понимается не только сбор урожая, но и воздействие теми или иными видами хозяйственной деятельности на условия существования природных биогеоценозов. Следовательно, рациональное использование природных ресурсов предполагает создание сбалансированного сельскохозяйственного производства, не истощающего почвенные и водные ресурсы и не загрязняющего землю и продукты питания; сохранение природных ландшафтов и обеспечение чистоты окружающей среды, сохранение нормального функционирования экосистем и их комплексов, поддержание биологического разнообразия природных сообществ на планете.

Список литературы

1. Реймерс Н. Ф. Экология. М., 1994.

2. Реймерс Н. Ф. Популярный биологический словарь.

3. Небел Б. Наука об окружающей среде: Как устроен мир. В 2 т. М.: Мир, 1993.

4. Гольдфейн М. Д., Кожевников Н. В. и др. Проблемы жизни в окружающей среде.

5. Реввель П., Реввель Ч. Среда нашего обитания. М., 1994.

Размещено на Allbest.ru

...

Подобные документы

    Характеристика возрастной структуры популяций. Изучение изменений ее основных биологических характеристик (численности, биомассы и популяционной структуры). Типы экологических взаимодействий между организмами. Роль конкуренции в разделении местообитаний.

    реферат , добавлен 08.07.2010

    Понятие и классификация экологического фактора. Соотношения между продуцентами и консументами всех уровней в экосистеме. Биологическое загрязнение окружающей среды. Виды юридической ответственности должностных лиц за экологические правонарушения.

    контрольная работа , добавлен 12.02.2015

    Рассмотрение соотношения пастбищных и детритных цепей. Построение пирамид численности, биомассы и энергии. Сравнение основных признаков водных и наземных экосистем. Типы биогеохимических круговоротов в природе. Понятие озонового слоя стратосферы.

    презентация , добавлен 19.10.2014

    контрольная работа , добавлен 28.09.2010

    Роль природы в жизни человека и общества. Ошибочные тенденции в природопользовании. Антропогенные факторы изменения природы. Законы экологии Б. Коммонера. Глобальные модели-прогнозы развития природы и общества. Концепция экологического императива.

    реферат , добавлен 19.05.2010

    Динамические и статические свойства популяций. Круговорот веществ и поток энергии в экосистеме. Основные положения учения о биосфере и ноосфере. Стратегия устойчивого развития цивилизации. Антропогенные факторы возникновения неустойчивости в биосфере.

    курс лекций , добавлен 16.10.2012

    Ознакомление с особенностями трофических уровней в экосистеме. Рассмотрение основ передачи вещества и энергии по цепи питания, выедания и разложения. Анализ правила пирамиды биологической продукции - закономерности создания биомассы в цепях питания.

    презентация , добавлен 21.01.2015

    Понятие про биогенные элементы. Природный круговорот серы. Типы экологических пирамид. Пирамиды биомассы, численности и энергии. "Повестка на XXI век", принципы обеспечения устойчивого развития. Программа поддержки Беларуси правительства Германии.

    контрольная работа , добавлен 05.05.2012

    Байкальская эпишура - доминантный зоопланктонный вид в экосистеме толщи вод Байкала, динамика ее популяций как определяющий фактор трофических взаимоотношений в пелагиали озера. Связь между сезонной динамикой возрастно-половой структуры и численностью.

    статья , добавлен 02.06.2015

    Среда обитания, классификация экологических факторов. Потоки энергии в экосистеме, экологические пирамиды. Мероприятия по предупреждению и устранению загрязнения почв неорганическими отходами и выбросами. Лицензия, договор и лимиты на природопользование.

Экологическая пирамида - это графическое изображение потерь энергии в цепях питания.

Цепи питания - это устойчивые цепи взаимосвязанных видов, последовательно извлекающих материалы и энергию из исходного пищевого вещества, сложившиеся в ходе эволюции живых организмов и биосферы в целом. Они составляют трофическую структуру любого биоценоза, по которой осуществляются перенос энергии и круговороты веществ. Пищевая цепь состоит из ряда трофических уровней, последовательность которых соответствует потоку энергии.

Первичным источником энергии в цепях питания является солнечная энергия. Первый трофический уровень - продуценты (зеленые растения) - используют солнечную энергию в процессе фотосинтеза, создавая первичную продукцию любого биоценоза. При этом только 0,1% солнечной энергии используется в процессе фотосинтеза. Эффективность, с которой зеленые растения ассимилируют солнечную энергию, оценивается величиной первичной продуктивности. Более половины энергии, связанной при фотосинтезе, тут же расходуется растениями в процессе дыхания, остальная часть энергии переносится далее по пищевым цепям.

При этом действует важная закономерность, связанная с эффективностью использования и превращения энергии в процессе питания. Сущность ее заключается в следующем: количество энергии, расходуемой на поддержание собственной жизнедеятельности, в цепях питания растет от одного трофического уровня к другому, а продуктивность падает.

Фитобиомасса используется в качестве источника энергии и материала для создания биомассы организмов второго

трофического уровня потребителей первого порядка - травоядных животных. Обычно продуктивность второго трофического уровня составляет не более 5 - 20% (10%) предыдущего уровня. Это находит отражение в соотношении на планете биомасс растительного и животного происхождения. Объем энергии, необходимой для обеспечения жизнедеятельности организма, растет с повышением уровня морфофункциональной организации. Соответственно, количество биомассы, создаваемой на более высоких трофических уровнях, снижается.

Экосистемы очень разнообразны по относительной скорости создания и расходования как чистой первичной продукции, так и чистой вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные соотношения первичной и вторичной продукции. Всегда количество растительного вещества, служащего основой цепи питания, в несколько раз (около 10 раз) больше, чем общая масса растительноядных животных, а масса каждого последующего звена пищевой цепи, соответственно, пропорционально изменяется.

Прогрессивное снижение ассимилированной энергии в ряду трофических уровней находит отражение в структуре экологических пирамид.


Снижение количества доступной энергии на каждом последующем трофическом уровне сопровождается снижением биомассы и численности особей. Пирамиды биомассы и численности организмов для данного биоценоза повторяют в общих чертах конфигурацию пирамиды продуктивности.

Графически экологическую пирамиду изображают в виде нескольких прямоугольников одинаковой высоты, но разной длины. Длина прямоугольника уменьшается от нижнего к верхнему соответственно уменьшению продуктивности на последующих трофических уровнях. Нижний треугольник самый большой по длине и соответствует первому трофическому уровню - продуцентам, второй - приблизительно в10 раз меньше и соответствует второму трофическому уровню - растительноядным животным, потребителям первого порядка и т.д.

Скорость создания органического вещества не определяет его суммарные запасы, т.е. общую массу организмов каждого трофического уровня. Наличная биомасса продуцентов и консументов в конкретных экосистемах зависит от того, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий, т.е. насколько сильно выедание образовавшихся запасов. Важную роль при этом имеет скорость воспроизведения основных генераций продуцентов и консументов.

В большинстве наземных экосистем, как уже говорилось, действует также правило биомасс, т.е. суммарная масса растений оказывается больше, чем биомасса всех травоядных, а масса травоядных превышает массу всех хищников.

Следует различать количественно продуктивность, - а именно годовой прирост растительности - и биомассу. Разница между первичной продукцией биоценоза и биомассой определяет масштабы выедания растительной массы. Даже для сообществ с преобладанием травянистых форм, скорость воспроизводства биомассы у которых достаточно велика, животные используют до 70% годового прироста растений.

В тех трофических цепях, где передача энергии осуществляется через связи «хищник - жертва», часто наблюдаются пирамиды численности особей: общее число особей, участвующих в цепях питания, с каждым звеном уменьшается. Это связано еще и с тем, что хищники, как правило, крупнее своих жертв. Исключение из правил пирамиды численности составляют случаи, когда мелкие хищники живут за счет групповой охоты на крупных животных.

Все три правила пирамиды - продуктивности, биомассы и численности - выражают энергетические отношения в экосистемах. При этом пирамида продуктивности имеет универсальный характер, а пирамиды биомассы и численности проявляются в сообществах с определенной трофической структурой.

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение. Первичная продукция агроценозов и эксплуатация человеком природных сообществ - основной источник пищи для человека. Важное значение имеет и вторичная продукция биоценозов, получаемая за счет промышленных и сельскохозяйственных животных, как источник животного белка. Знание законов распределения энергии, потоков энергии и вещества в биоценозах, закономерностей продуктивности растений и животных, понимание пределов допустимого изъятия растительной и животной биомассы из природных систем позволяют правильно строить отношения в системе «общество - природа».

Связи при которых одни организмы поедают другие организмы или их останки или выделения (экскременты) называются трофическими (трофе - питание, пища, гр.) . При этом пищевые взаимоотношения между членами экосистемы выражаются через трофические (пищевые) цепи . Примерами таких цепей могут служить:

· ягель → олень → волк (экосистема тундры);

· трава → корова → человек (антропогенная экосистема);

· микроскопические водоросли (фитопланктон) → жучки и дафнии (зоопланктон) → плотва → щука → чайки (водная экосистема).

Воздействие на цепи питания с целью их оптимизации и получения большей или лучшей по качеству продукции не всегда бывают удачны. Так широко известен из литературы пример с завозом коров в Австралию. До этого природными пастбищами пользовались преимущественно кенгуру, экскременты которых успешно осваивались и перерабатывались австралийским навозным жуком. Коровьи экскременты австралийским жуком не осваивались, в результате чего началась постепенная деградация пастбищ. Для прекращения этого процесса пришлось завезти в Австралию европейского навозного жука.

Тpофические или пищевые цепи могут быть пpедставлены в фоpме пиpамиды. Численное значение каждой ступени такой пиpамиды может быть выpажена числом особей, их биомассой или накопленной в ней энергией.

В соответствии с законом пирамиды энергий Р.Линдемана и правила десяти процентов , с каждой ступени на последующую ступень переходит приблизительно 10 % (от 7 до 17 %) энергии или вещества в энергетическом выражении (рис.3.7). Заметим, что на каждом последующем уровне при снижении количества энергии ее качество возрастает, т.е. способность совершать работу единицы биомассы животного в соответствующее число раз выше, чем такой же биомассы растений.

Ярким примером является трофическая цепь открытого моря, представленная планктоном и китами. Масса планктона рассеяна в океанической воде и, при биопродуктивности открытого моря менее 0,5 г/м2 сут-1, количество потенциальной энергии в кубическом метре океанической воды бесконечно мало в сравнении с энергией кита, масса которого может достигать нескольких сотен тонн. Как известно, китовый жир - это высококалорийный продукт, который использовали даже для освещения.

Рис.3.7. Пиpамидапеpедачиэнеpгии по пищевой цепи (по Ю.Одуму)

В деструкции органики тоже наблюдается соответствующая последовательность: так около 90 % энергии чистой первичной продукции освобождают микроорганизмы и грибы, менее 10 % - беспозвоночные животные и менее 1 % - позвоночные животные, являющиеся конечными косументами. В соответствии с последней цифрой сформулировано правило одного процента : для стабильности биосферы в целом доля возможного конечного потребления чистой первичной продукции в энергетическом выражении не должно превышать 1%.

Опираясь на пищевую цепь, как основу функционирования экосистемы, можно также объяснить случаи накопления в тканях некоторых веществ (например синтетических ядов), которые по мере их движения по трофической цепи не участвуют в нормальном обмене веществ организмов. Согласно правила биологического усиления происходит примерно десятикратное увеличение концентрации загрязнителя при переходе на более высокий уровень экологической пирамиды.

В частности, казалось бы незначительное повышенное содержания радионуклидов в речной воде на первом уровне трофической цепи осваивается микpооpганизмами и планктоном, затем концентpиpуется в тканях рыб и достигает максимальных значений у чаек. Их яйца имеют уровень радионуклидов в 5000 pаз больший по сравнению с фоновым загрязнением.

Видовой состав организмов обычно изучается на уровне популяции .

Напомним, что популяцией называется совокупность особей одного вида, населяющих одну территорию, имеющих общий генофонд и возможность свободно скрещиваться. В общем случае, та или иная популяция может находиться в пределах некоторой экосистемы, но может pаспpостpаняться и за границы. Hапpимеp, известна и охраняется популяция чеpношапошного сурка хребта Туоpа-Сис, занесенного в Красную Книгу. Данная популяция не ограничивается этим хребтом, но пpостиpается и южнее в пределы Веpхоянскихгоp в Якутии.

Среда, в которой обычно встречается изучаемый вид, называется его местообитанием.

Как правило, экологическую нишу занимает один какой-то вид или его популяция. При совпадающих требованиях к окружающей среде и пищевым pесуpсам, два вида неизменно вступают в конкурентную борьбу, которая обычно заканчивается вытеснением одного из них. Подобная ситуация известна в системной экологии, как принцип Г.Ф. Гаузе , который гласит, что два вида не могут существовать в одной и той же местности, если их экологические потребности идентичны, т.е. если они занимают одну и ту же нишу. Соответственно, система взаимодействующих, диффеpенциpованных по экологическим нишам популяций, дополняющих друг друга в большей мере, нежели конкуpиpующих между собой за использование пpостpанства, времени и pесуpсов, называется сообществом (ценозом).

Белый медведь не может обитать в таежных экосистемах, также как бурый в полярных областях.

Видообразование всегда адаптивно, поэтому по аксиоме Ч.Дарвина каждый вид адаптирован к строго определенной, специфичной для него совокупности условий существования. При этом организмы размножаются с интенсивностью, обеспечивающей максимально возможное их число (правило максимального "давления жизни " ).

Например, организмы океанического планктона довольно быстро покрывают пространство в тысячи квадратных километров в виде пленки. В.И.Вернадский подсчитал, что скорость продвижения бактерии Фишера размером 10-12 см3 путем размножения по прямой была бы равна около 397 200 м/час - скорость самолета! Однако чрезмерное размножение организмов ограничивается лимитирующими факторами и коррелирует с количеством пищевых ресурсов среды их обитания.

Когда происходит исчезновение видов, прежде всего составленных крупными особями, в итоге меняется вещественно-энергетическая структура цензов. Если энергетический поток, проходящий через экосистему, не меняется, то включаются механизмы экологического дублирования по принципу : исчезающий или уничтожаемый вид в рамках одного уровня экологической пирамиды заменяет другой функционально-ценотический, аналогичный. Замена вида идет по схеме: мелкий сменяет крупного, эволюционно ниже организованный более высокоорганизованного, более генетически лабильный менее генетически изменчивого. Так как экологическая ниша в биоценозе не может пустовать, то экологическое дублирование происходит обязательно.

Последовательная смена биоценозов, преемственно возникающая на одной и той же территории под воздействием природных факторов или воздействия человека, называется сукцессией (сукцессио - преемственность, лат.) . Например, после лесного пожара горельник в течение многих лет заселяется сначала травами, потом кустарником, затем лиственными деревьями и в конечном итоге хвойным лесом. При этом последовательные сообщества, сменяющие друг друга, называются сериями или стадиями. Конечным результатом сукцессии будет состояние стабилизированнной экосистемы - климакс (климакс - лестница, "зрелая ступень", гр.) .

Сукцессия, начинающаяся на участке, прежде не занятом, называется первичной . К таковым относятся поселения лишайников на камнях, которые впоследствие заменят мхи, травы и кустарники (рис.3.8). Если сообщество развивается на месте уже существовавшего (например, после пожара или раскорчевки, устройства пруда или водохранилища), то говорят о вторичной сукцессии. Конечно, скорость сукцессий будет различной. Для первичных сукцессий могут потребоваться сотни или тысячи лет, а вторичные протекают быстрее.

Все популяции продуцентов, консументов и гетеротрофов тесно взаимодействуют через трофические цепи и таким образом поддерживают структуру и целостность биоценозов, согласовывают потоки энергии и вещества, обуславливают регуляцию окружающей их среды. Вся совокупность тел живых организмов населяющих Землю физико-химически едина, вне зависимости от их систематической принадлежности и называется живым веществом (закон физико-химического единства живого вещества В.И.Вернадского ). Масса живого вещества сравнительно мала и оценивается величиной 2,4-3,6*1012 т (в сухом весе). Если ее распределить по всей поверхности планеты, то получится слой всего в полтора сантиметра. По В.И.Вернадскому эта "пленка жизни", составляющая менее 10-6 массы других оболочек Земли, является "одной из самых могущественных геохимических сил нашей планеты".


Close