Природный алюминий состоит из одного нуклида 27Al. Конфигурация внешнего электронного слоя 3s2p1. Практически во всех соединениях степень окисления алюминия +3 (валентность III).

Радиус нейтрального атома алюминия 0,143 нм, радиус иона Al3+ 0,057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828, 28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5.

Простое вещество алюминий -- мягкий легкий серебристо-белый металл.

Свойства

Алюминий -- типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660°C, температура кипения около 2450°C, плотность 2,6989 г/см3. Температурный коэффициент линейного расширения алюминия около 2,5·10-5 К-1 Стандартный электродный потенциал Al 3+/ Al -- 1,663В.

Химически алюминий -- довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al 2 О 3 , которая препятствует дальнейшему доступу кислорода (O) к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.

С остальными кислотами алюминий активно реагирует:

6НСl + 2Al = 2AlCl 3 + 3H 2 ,

3Н 2 SO 4 + 2Al = Al 2 (SO 4) 3 + 3H 2 .

Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка:

Al 2 О 3 + 2NaOH + 3H 2 O = 2Na.

Затем протекают реакции:

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ,

NaOH + Al(OH) 3 = Na,

или суммарно:

2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ,

и в результате образуются алюминаты: Na -- алюминат натрия (Na) (тетрагидроксоалюминат натрия), К -- алюминат калия (K) (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие:

Na и К.

При нагревании алюминий реагирует с галогенами:

2Al + 3Cl 2 = 2AlCl 3 ,

2Al + 3 Br 2 = 2AlBr 3 .

Интересно, что реакция между порошками алюминия и иода (I) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:

2Al + 3I 2 = 2AlI 3 .

Взаимодействие алюминия с серой (S) при нагревании приводит к образованию сульфида алюминия:

2Al + 3S = Al 2 S 3 ,

который легко разлагается водой:

Al 2 S 3 + 6Н 2 О = 2Al(ОН) 3 + 3Н 2 S.

С водородом (H) алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений, можно синтезировать твердый полимерный гидрид алюминия (AlН 3) х -- сильнейший восстановитель.

В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al 2 О 3 .

Высокая прочность связи в Al 2 О 3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:

3Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe и даже

3СаО + 2Al = Al 2 О 3 + 3Са.

Такой способ получения металлов называют алюминотермией.

Амфотерному оксиду Al 2 О 3 соответствует амфотерный гидроксид -- аморфное полимерное соединение, не имеющее постоянного состава. Состав гидроксида алюминия может быть передан формулой xAl 2 O 3 ·yH 2 O, при изучении химии в школе формулу гидроксида алюминия чаще всего указывают как Аl(OH) 3 .

В лаборатории гидроксид алюминия можно получить в виде студенистого осадка обменными реакциями:

Al 2 (SO 4) 3 + 6NaOH = 2Al(OH) 3 + 3Na 2 SO 4 ,

или за счет добавления соды к раствору соли алюминия:

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 + 6NaCl + 3CO 2 ,

а также добавлением раствора аммиака к раствору соли алюминия:

AlCl 3 + 3NH 3 ·H2O = Al(OH) 3 + 3H 2 O + 3NH 4 Cl.

Название и история открытия: латинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия (K) KAl(SO 4) 2 ·12H 2 O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному -- оксид алюминия) сделал еще в 1754 немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825 датский физик Х. К. Эрстед. Он обработал амальгамой калия (сплавом калия (K) со ртутью (Hg)) хлорид алюминия AlCl 3 , который можно было получить из глинозема, и после отгонки ртути (Hg) выделил серый порошок алюминия.

Только через четверть века этот способ удалось немного модернизировать. Французский химик А. Э. Сент-Клер Девиль в 1854 году предложил использовать для получения алюминия металлический натрий (Na), и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготовляли ювелирные украшения.

Промышленный способ производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20-ом веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.

Этот легкий металл с серебристо-белым оттенком в современной жизни встречается почти повсеместно. Физические и химические свойства алюминия позволяют широко использовать его в промышленности. Самые известные месторождения - в Африке, Южной Америке, в Карибском регионе. В России места добычи бокситов имеются на Урале. Мировыми лидерами по производству алюминия являются Китай, РФ, Канада, США.

Добыча Al

В природе этот серебристый металл в силу своей высокой химической активности встречается лишь в виде соединений. Наиболее известные геологические породы, содержащие алюминий, - это бокситы, глиноземы, корунды, полевые шпаты. Промышленное значение имеют бокситы и глиноземы, именно месторождения этих руд позволяют добывать алюминий в чистом виде.

Свойства

Физические свойства алюминия позволяют легко вытягивать заготовки этого металла в проволоку и прокатывать в тонкие листы. Этот металл не является прочным, для повышения данного показателя при выплавке его легируют различными добавками: медью, кремнием, магнием, марганцем, цинком. Для промышленного назначения важно еще одно физическое свойство вещества алюминия - это его способность быстро окисляться на воздухе. Поверхность изделия из алюминия в естественных условиях обычно покрыта тонкой оксидной пленкой, которая эффективно защищает металл и препятствует его коррозии. При уничтожении этой пленки серебристый металл быстро окисляется, при этом его температура заметно повышается.

Внутреннее строение алюминия

Физические и химические свойства алюминия во многом зависят от его внутреннего строения. Кристаллическая решетка этого элемента является разновидностью гранецентрированного куба.

Данный тип решетки присущ многим металлам, таким, как медь, бром, серебро, золото, кобальт и другие. Высокая теплопроводность и способность проводить электричество сделали этот металл одним из самых востребованных в мире. Остальные физические свойства алюминия, таблица которых представлена ниже, раскрывают полностью его свойства и показывают сферы их применения.

Легирование алюминия

Физические свойства меди и алюминия таковы, что при добавлении к алюминиевому сплаву некоторого количества меди его кристаллическая решетка искривляется, и прочность самого сплава повышается. На этом свойстве Al основано легирование легких сплавов для повышения их прочности и стойкости к воздействию агрессивной среды.

Объяснение процесса упрочнения лежит в поведении атомов меди в кристаллической решетке алюминия. Частицы Cu стремятся выпасть из кристаллической решетки Al, группируются на ее особых участках.

Там, где атомы меди образуют скопления, образуется кристаллическая решетка смешанного типа CuAl 2 , в которой частицы серебристого металла одновременно входят в состав и общей кристаллической решетки алюминия, и в состав решетки смешанного типа CuAl 2. Силы внутренних связей в искаженной решетке гораздо больше, чем в обычной. А значит, и прочность новообразованного вещества гораздо выше.

Химические свойства

Известно взаимодействие алюминия с разбавленными серной и соляной кислотой. При нагревании этот металл в них легко растворяется. Холодная концентрированная или сильно разбавленная азотная кислота не растворяет этот элемент. Водные растворы щелочей активно воздействуют на вещество, в процессе реакции образуя алюминаты - соли, в составе которых имеются ионы алюминия. Например:

Al 2 O 3 +3H2O+2NaOH=2Na

Получившееся в результате реакции соединение носит название тетрагидроксоалюминат натрия.

Тонкая пленка на поверхности алюминиевых изделий защищает этот металл не только от воздуха, но и от воды. Если эту тонкую преграду убрать, элемент станет бурно взаимодействовать с водой, выделяя из нее водород.

2AL+6H 2 O= 2 AL (OH) 3 +3Н 2

Образовавшееся вещество называется гидроксидом алюминия.

AL (OH) 3 реагирует с щелочью, образуя кристаллы гидроксоалюмината:

Al(OH) 2 +NaOH=2Na

Если это химическое уравнение сложить с предыдущим, получим формулу растворения элемента в щелочном растворе.

Al(OH) 3 +2NaOH+6H 2 O=2Na +3H 2

Горение алюминия

Физические свойства алюминия позволяют ему вступать в реакцию с кислородом. Если порошок этого металла или алюминиевую фольгу нагреть, то она вспыхивает и горит белым ослепительным пламенем. В конце реакции образуется оксид алюминия Al 2 O 3.

Глинозем

Полученный оксид алюминия имеет геологическое название глинозем. В естественных условиях он встречается в виде корунда - твердых прозрачных кристаллов. Корунд отличается высокой твердостью, в шкале твердых веществ его показатель составляет 9. Сам корунд бесцветен, но различные примеси могут окрасить его в красный и синий цвет, так получаются драгоценные камни, которые в ювелирном деле называются рубинами и сапфирами.

Физические свойства оксида алюминия позволяют выращивать эти драгоценные камни в искусственных условиях. Технические драгоценные камни используются не только для ювелирных украшений, они применяются в точном приборостроении, для изготовления часов и прочего. Широко используются искусственные кристаллы рубина и в лазерных устройствах.

Мелкозернистая разновидность корунда с большим количеством примесей, нанесенная на специальную поверхность, известна всем как наждак. Физические свойства оксида алюминия объясняют высокие абразивные свойства корунда, а также его твердость и устойчивость к трению.

Гидроксид алюминия

Al 2 (OH) 3 является типичным амфотерным гидроксидом. В соединении с кислотой это вещество образует соль, содержащую положительно заряженные ионы алюминия, в щелочах образует алюминаты. Амфотерность вещества проявляется в том, что он может вести себя и как кислота, и как щелочь. Это соединение может существовать и в желеобразном, и в твердом виде.

В воде практически не растворяется, но вступает в реакцию с большинством активных кислот и щелочей. Физические свойства гидроксида алюминия используются в медицине, это популярное и безопасное средство снижения кислотности в организме, его применяют при гастритах, дуоденитах, язвах. В промышленности Al 2 (OH) 3 используется в качестве адсорбента, он прекрасно очищает воду и осаждает растворенные в ней вредные элементы.

Промышленное использование

Алюминий был открыт в 1825 году. Поначалу данный металл ценился выше золота и серебра. Это объяснялось сложностью его извлечения из руды. Физические свойства алюминия и его способность быстро образовывать защитную пленку на своей поверхности затрудняли исследование этого элемента. Лишь в конце 19 века был открыт удобный способ плавки чистого элемента, пригодный для использования в промышленных масштабах.

Легкость и способность сопротивляться коррозии - уникальные физические свойства алюминия. Сплавы этого серебристого металла применяются в ракетной технике, в авто-, судо-, авиа- и приборостроении, в производстве столовых приборов и посуды.

Как чистый металл Al используется при изготовлении деталей для химической аппаратуры, электропроводов и конденсаторов. Физические свойства алюминия таковы, что его электропроводность не так высока, как у меди, но этот недостаток компенсируется легкостью рассматриваемого металла, что позволяет делать провода из алюминия более толстыми. Так, при одинаковой электропроводности алюминиевый провод весит в два раза меньше медного.

Не менее важным является применение Al в процессе алитирования. Так называется реакция насыщения поверхности чугунного или стального изделия алюминием с целью защиты основного металла от коррозии при нагревании.

В настоящее время изведанные запасы алюминиевых руд вполне сопоставимы с потребностями людей в этом серебристом металле. Физические свойства алюминия могут преподнести еще немало сюрпризов его исследователям, а сферы применения этого металла гораздо шире, чем можно представить.

ОПРЕДЕЛЕНИЕ

Алюминий - тринадцатый элемент Периодической таблицы. Обозначение - Al от латинского «aluminium». Расположен в третьем периоде, IIIА группе. Относится к металлам. Заряд ядра равен 13.

Алюминий - самый распространенный в земной коре металл. Он входит в состав глин, полевых шпатов, слюд и многих других минералов. Общее содержание алюминия в земной коре составляет 8% (масс.).

Алюминий - серебристо-белый (рис. 1) легкий металл. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

При комнатной температуре алюминий не изменяется на воздухе, но лишь потому, что его поверхность покрыта тонкой пленкой оксида, обладающего очень сильным защитным действием.

Рис. 1. Алюминий. Внешний вид.

Атомная и молекулярная масса алюминия

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии алюминий существует в виде одноатомных молекул Al, значения его атомной и молекулярной масс совпадают. Они равны 26,9815.

Изотопы алюминия

Известно, что в природе алюминий может находиться в виде одного стабильного изотопа 27 Al. Массовое число равно 27. Ядро атома изотопа алюминия 27 Al содержит тринадцать протонов и четырнадцать нейтронов.

Существуют радиоактивные изотопы алюминия с массовыми числами от 21-го до 42-х, среди которых наиболее долгоживущим является изотоп 26 Al, период полураспада которого составляет 720 тысяч лет.

Ионы алюминия

На внешнем энергетическом уровне атома алюминия имеется три электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3р 1 .

В результате химического взаимодействия алюминий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Al 0 -3e → Al 3+ .

Молекула и атом алюминия

В свободном состоянии алюминий существует в виде одноатомных молекул Al. Приведем некоторые свойства, характеризующие атом и молекулу алюминия:

Сплавы алюминия

Основное применение алюминия - производство сплавов на его основе. Легирующие добавки (например, медь, кремний, магний, цинк, марганец) вводят в алюминий главным образом для повышения его прочности.

Широкое применение имеют дуралюмины, содержащие медь и магний, силумины, в которых основной добавкой служит кремний, магналий (сплав алюминия с 9,5-11,5% магния).

Алюминий - одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка и железа.

Примеры решения задач

ПРИМЕР 1

Задание Для сварки рельсов по методу алюмотермии используют смесь алюминия и оксида железа Fe 3 O 4 . Составьте термохимическое уравнение реакции, если при образовании железа массой 1 кг (1000 г) выделяется 6340 кДж тепла.
Решение Запишем уравнение реакции получения железа алюмотермическим методом:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 .

Найдем теоретическую массу железа (рассчитанная по термохимическому уравнению реакции):

n(Fe) = 9 моль;

m(Fe) = n(Fe) ×M(Fe);

m(Fe) = 9 × 56 = 504 г.

Пусть в ходе реакции выделится х кДж теплоты. Составим пропорцию:

1000 г - 6340 кДж;

504 г - х кДж.

Отсюда х будет равен:

х = 540 ×6340 / 1000 = 3195.

Значит в ходе реакции получения железа алюмотермическим методом выделяется 3195 кДж теплоты. Термохимическое уравнение реакции имеет вид:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 + 3195 кДж.

Ответ В ходе реакции выделяется 3195 кДж теплоты.

ПРИМЕР 2

Задание Алюминий обработали 200 г 16%-го раствора азотной кислоты, при этом выделился газ. Определите массу и объем выделившегося газа.
Решение Запишем уравнение реакции растворения алюминия в азотной кислоте:

2Al + 6HNO 3 = 2Al(NO 3) 3 + 3H 2 -.

Рассчитаем массу растворенного вещества азотной кислоты:

m(HNO 3) = m solution (HNO 3)×w(HNO 3) / 100%;

m(HNO 3) = 20 ×96% / 100% =19,2 г.

Найдем количество вещества азотной кислоты:

M(HNO 3) = Ar(H) + Ar(N) + 3×Ar(O) = 1 + 14 + 3×16 = 63 г/моль.

n(HNO 3) = m (HNO 3) / M(HNO 3);

n(HNO 3) = 19,2 / 63 = 0,3моль.

Согласно уравнению реакцииn(HNO 3) :n(H 2) = 6:3, т.е.

n(H 2) = 3×n(HNO 3) / 6 = ½ ×n(HNO 3) = ½ × 0,3 = 0,15 моль.

Тогда масса и объем выделившегося водорода будут равны:

M(H 2) = 2×Ar(H) = 2×1 = 2 г/моль.

m(H 2) = n(H 2) ×M(H 2) = 0,15×2 = 0,3г.

V(H 2) = n(H 2) ×V m ;

V(H 2) = 0,15× 22,4 = 3,36л.

Ответ В результате реакции выделяется водород массой 0,3 г и объемом 3,36 л.

ОПРЕДЕЛЕНИЕ

Алюминий расположен в третьем периоде, III группе главной (A) подгруппе Периодической таблицы. Это первый p-элемент 3-го периода.

Металл. Обозначение - Al. Порядковый номер - 13. Относительная атомная масса - 26,981 а.е.м.

Электронное строение атома алюминия

Атом алюминия состоит из положительно заряженного ядра (+13), внутри которого находится 13 протонов и 14 нейтронов. Ядро окружено тремя оболочками, по которым движутся 13 электронов.

Рис. 1. Схематическое изображение строения атома алюминия.

Распределение электронов по орбиталям выглядит следующим образом:

13Al) 2) 8) 3 ;

1s 2 2s 2 2p 6 3s 2 3p 1 .

На внешнем энергетическом уровне алюминия находится три электрона, все электроны 3-го подуровня. Энергетическая диаграмма принимает следующий вид:

Теоретически возможно возбужденное состояние для атома алюминия за счет наличия вакантной 3d -орбитали. Однако распаривания электронов 3s -подуровня на деле не происходит.

Примеры решения задач

ПРИМЕР 1

Одними из самых удобных в обработке материалов являются металлы. Среди них также есть свои лидеры. Так, например, основные свойства алюминия известны людям уже давно. Они настолько подходят для применения в быту, что данный металл стал очень популярным. Каковы же как простого вещества и как атома, рассмотрим в данной статье.

История открытия алюминия

Издавна человеку было известно соединение рассматриваемого металла - Оно использовалось как средство, способное набухать и связывать между собой компоненты смеси, это было необходимо и при выделке кожаных изделий. О существовании в чистом виде оксида алюминия стало известно в XVIII веке, во второй его половине. Однако при этом получено не было.

Сумел же выделить металл из его хлорида впервые ученый Х. К. Эрстед. Именно он обработал амальгамой калия соль и выделил из смеси серый порошок, который и был алюминием в чистом виде.

Тогда же стало понятно, что химические свойства алюминия проявляются в его высокой активности, сильной восстановительной способности. Поэтому долгое время с ним никто больше не работал.

Однако в 1854 году француз Девиль смог получить слитки металла методом электролиза расплава. Этот способ актуален и по сей день. Особенно массовое производство ценного материала началось в XX веке, когда были решены проблемы получения большого количества электроэнергии на предприятиях.

На сегодняшний день данный металл - один из самых популярных и применяемых в строительстве и бытовой промышленности.

Общая характеристика атома алюминия

Если характеризовать рассматриваемый элемент по положению в периодической системе, то можно выделить несколько пунктов.

  1. Порядковый номер - 13.
  2. Располагается в третьем малом периоде, третьей группе, главной подгруппе.
  3. Атомная масса - 26,98.
  4. Количество валентных электронов - 3.
  5. Конфигурация внешнего слоя выражается формулой 3s 2 3p 1 .
  6. Название элемента - алюминий.
  7. выражены сильно.
  8. Изотопов в природе не имеет, существует только в одном виде, с массовым числом 27.
  9. Химический символ - AL, в формулах читается как "алюминий".
  10. Степень окисления одна, равна +3.

Химические свойства алюминия полностью подтверждаются электронным строением его атома, ведь имея большой атомный радиус и малое сродство к электрону, он способен выступать в роли сильного восстановителя, как и все активные металлы.

Алюминий как простое вещество: физические свойства

Если говорить об алюминии, как о простом веществе, то он представляет собой серебристо-белый блестящий металл. На воздухе быстро окисляется и покрывается плотной оксидной пленкой. Тоже самое происходит и при действии концентрированных кислот.

Наличие подобной особенности делает изделия из этого металла устойчивыми к коррозии, что, естественно, очень удобно для людей. Поэтому и находит такое широкое применение в строительстве именно алюминий. также еще интересны тем, что данный металл очень легкий, при этом прочный и мягкий. Сочетание таких характеристик доступно далеко не каждому веществу.

Можно выделить несколько основных физических свойств, которые характерны для алюминия.

  1. Высокая степень ковкости и пластичности. Из данного металла изготовляют легкую, прочную и очень тонкую фольгу, его же прокатывают в проволоку.
  2. Температура плавления - 660 0 С.
  3. Температура кипения - 2450 0 С.
  4. Плотность - 2,7 г/см 3 .
  5. Кристаллическая решетка объемная гранецентрированная, металлическая.
  6. Тип связи - металлическая.

Физические и химические свойства алюминия определяют области его применения и использования. Если говорить о бытовых сторонах, то большую роль играют именно уже рассмотренные нами выше характеристики. Как легкий, прочный и антикоррозионный металл, алюминий применяется в самолето- и кораблестроении. Поэтому эти свойства очень важно знать.

Химические свойства алюминия

С точки зрения химии, рассматриваемый металл - сильный восстановитель, который способен проявлять высокую химическую активность, будучи чистым веществом. Главное - это устранить оксидную пленку. В этом случае активность резко возрастает.

Химические свойства алюминия как простого вещества определяются его способностью вступать в реакции с:

  • кислотами;
  • щелочами;
  • галогенами;
  • серой.

С водой он не взаимодействует при обычных условиях. При этом из галогенов без нагревания реагирует только с йодом. Для остальных реакций нужна температура.

Можно привести примеры, иллюстрирующие химические свойства алюминия. Уравнения реакций взаимодействия с:

  • кислотами - AL + HCL = AlCL 3 + H 2 ;
  • щелочами - 2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ;
  • галогенами - AL + Hal = ALHal 3 ;
  • серой - 2AL + 3S = AL 2 S 3 .

В целом, самое главное свойство рассматриваемого вещества - это высокая способность к восстановлению других элементов из их соединений.

Восстановительная способность

Восстановительные свойства алюминия хорошо прослеживаются на реакциях взаимодействия с оксидами других металлов. Он легко извлекает их из состава вещества и позволяет существовать в простом виде. Например: Cr 2 O 3 + AL = AL 2 O 3 + Cr.

В металлургии существует целая методика получения веществ, основанная на подобных реакциях. Она получила название алюминотермии. Поэтому в химической отрасли данный элемент используется именно для получения других металлов.

Распространение в природе

По распространенности среди других элементов-металлов алюминий занимает первое место. Его в земной коре содержится 8,8 %. Если же сравнивать с неметаллами, то место его будет третьим, после кислорода и кремния.

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико.

Самые распространенные вещества, содержащие рассматриваемый металл:

  • полевые шпаты;
  • бокситы;
  • граниты;
  • кремнезем;
  • алюмосиликаты;
  • базальты и прочие.

В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

Получение

Физические и химические свойства алюминия позволяют получать его только одним способом: электролизом расплава соответствующего оксида. Однако процесс этот технологически сложен. Температура плавления AL 2 O 3 превышает 2000 0 С. Из-за этого подвергать электролизу непосредственно его не получается. Поэтому поступают следующим образом.


Выход продукта составляет 99,7 %. Однако возможно получение и еще более чистого металла, который используется в технических целях.

Применение

Механические свойства алюминия не столь хороши, чтобы применять его в чистом виде. Поэтому чаще всего используются сплавы на основе данного вещества. Таких много, можно назвать самые основные.

  1. Дюралюминий.
  2. Алюминиево-марганцевые.
  3. Алюминиево-магниевые.
  4. Алюминиево-медные.
  5. Силумины.
  6. Авиаль.

Основное их отличие - это, естественно, сторонние добавки. Во всех основу составляет именно алюминий. Другие же металлы делают материал более прочным, стойким к коррозии, износоустойчивым и податливым в обработке.

Можно назвать несколько основных областей применения алюминия как в чистом виде, так и в виде его соединений (сплавов).


Вместе с железом и его сплавами алюминий - самый важный металл. Именно эти два представителя периодической системы нашли самое обширное промышленное применение в руках человека.

Свойства гидроксида алюминия

Гидроксид - самое распространенное соединение, которое образует алюминий. Свойства химические его такие же, как и у самого металла, - он амфотерный. Это значит, что он способен проявлять двойственную природу, вступая в реакции как с кислотами, так и со щелочами.

Сам по себе гидроксид алюминия - это белый студенистый осадок. Получить его легко при взаимодействии соли алюминия с щелочью или При взаимодействии с кислотами данный гидроксид дает обычную соответствующую соль и воду. Если же реакция идет с щелочью, то формируются гидроксокомплексы алюминия, в которых его координационное число равно 4. Пример: Na - тетрагидроксоалюминат натрия.


Close