Как ни важны средние характеристики, но не менее важной характеристикой массива числовых данных является поведение остальных членов массива по отношению к среднему показателю, на сколько они отличаются от средних показателей, как много членов массива значительно отличаются от среднего. На тренировках по стрельбе говорят о кучности результатов, в статистике исследуют характеристики рассеяния (разброса).

Отличие какого-либо значения х, от среднего значения х называют отклонением и вычисляют как разность х, - х. При этом отклонение может принимать как положительные значения, если число больше среднего, так и отрицательные значения, если число меньше среднего. Однако в статистике часто важно иметь возможность оперировать одним числом, характеризующим «кучность» всех числовых элементов массива данных. Любое суммирование всех отклонений членов массива приведет к нулю, так как положительные и отрицательные отклонения взаимно уничтожатся. Чтобы избежать обнуления, используют для характеристики рассеяния квадраты разностей, точнее, среднее арифметическое квадратов отклонений. Такую характеристику рассеяния называют выборочная дисперсия.

Чем больше дисперсия, тем больше рассеяние значений случайной величины. Для вычисления дисперсии используют приближенное значение выборочного среднего х с запасом на один разряд по отношению ко всем членам массива данных. В противном случае при суммировании большого количества приближенных значений будет накапливаться существенная ошибка. В связи с размерностью числовых значений следует отметить один недостаток такого показателя рассеяния, как выборочная дисперсия: единица измерения дисперсии D является квадратом единицы измерения значений х, характеристикой которых дисперсия является. Чтобы избавиться от этого недостатка, в статистике введена такая характеристика рассеяния, как выборочное среднее квадратичное отклонение , которое обозначается символом а (читается «сигма») и вычисляется по формуле

В норме более половины членов массива данных отличаются от среднего показателя меньше, чем на величину среднего квадратичного отклонения, т.е. принадлежат отрезку - а; х + а]. Иначе говорят: средний показатель с учетом разброса данных равен х ± а.

Введение еще одной характеристики рассеяния связано с размерностью членов массива данных. Все числовые характеристики в статистике вводятся с целью сравнения результатов исследования разных числовых массивов, характеризующих разные случайные величины. Однако сравнивать средние квадратичные отклонения от разных средних величин разных массивов данных не показательно, особенно если еще и размерность этих величин отличается. Например, если сравнивается длина и вес каких- либо объектов или рассеяния при изготовлении микро- и макроизделий. В связи с вышеизложенными соображениями вводится характеристика относительного рассеяния, которая называется коэффициентом вариации и вычисляется по формуле

Для подсчета числовых характеристик рассеяния значений случайной величины удобно использовать таблицу (табл. 6.9).

Таблица 6.9

Подсчет числовых характеристик рассеяния значений случайной величины

Xj - X

(Xj-X) 2 /

В процессе заполнения этой таблицы находится выборочное среднее х, которое в дальнейшем будет использоваться в двух видах. Как итоговая средняя характеристика (например, в третьем столбце таблицы) выборочное среднее х должно быть округлено до разряда, соответствующего наименьшему разряду какого-либо члена массива числовых данных х г Однако этот показатель используется в таблице при дальнейших вычислениях, и в этой ситуации, а именно при вычислениях в четвертом столбце таблицы, выборочное среднее х должно быть округлено с запасом на один разряд по отношению к наименьшему разряду какого-либо члена массива числовых данных х { .

Итогом вычислений при помощи таблицы типа табл. 6.9 будет получение значения выборочной дисперсии, а для записи ответа надо на основе значения выборочной дисперсии посчитать значение среднего квадратичного отклонения а.

В ответе указывается: а) средний результат с учетом разброса данных в виде х±о ; б) характеристика стабильности данных V. В ответе следует оценить качество коэффициента вариации: плохой или хороший.

Допустимым коэффициентом вариации как показателем однородности или стабильности результатов в спортивных исследованиях считается 10-15%. Коэффициент вариации V = 20% в любых исследованиях считается весьма большим показателем. Если объем выборки п > 25, то V > 32% - очень плохой показатель.

Например, для дискретного вариационного ряда 1; 5; 4; 4; 5; 3; 3; 1; 1; 1; 1; 1; 1; 3; 3; 5; 3; 5; 4; 4; 3; 3; 3; 3; 3 табл. 6.9 будет заполнена следующим образом (табл. 6.10).

Таблица 6.10

Пример подсчета числовых характеристик рассеяния значений

*1

fi

1

Л п 25 = 2,92 = 2,9

D _S_47,6_ п 25

Ответ : а) средняя характеристика с учетом разброса данных равна х ± а = = 3 ± 1,4; б) стабильность полученных измерений находится на низком уровне, так как коэффициент вариации V = 48% > 32%.

Аналог табл. 6.9 может быть использован и для вычисления характеристик рассеяния интервального вариационного ряда. При этом варианты х г будут заменены представителями промежутков x v ja абсолютные частоты вариант f { - на абсолютные частоты промежутков f v

На основании вышеизложенного можно сделать следующие выводы.

Выводы математической статистики правдоподобны, если обрабатывается информация о массовых явлениях.

Обычно исследуется выборка из генеральной совокупности объектов, которая должна быть репрезентативна.

Опытные данные, полученные в результате исследования какого-либо свойства объектов выборки, представляют собой значение случайной величины, поскольку исследователь заранее не может предсказать, какое именно число будет соответствовать определенному объекту.

Для выбора того или иного алгоритма описания и первичной обработки опытных данных важно уметь определять тип случайной величины: дискретная, непрерывная или смешанная.

Дискретные случайные величины описываются дискретным вариационным рядом и его графической формой - полигоном частот.

Смешанные и непрерывные случайные величины описываются интервальным вариационным рядом и его графической формой - гистограммой.

При сравнении нескольких выборок по уровню сформированное™ некоторого свойства используют средние числовые характеристики и числовые характеристики рассеяния случайной величины по отношению к средним.

При вычислении средней характеристики важно правильно выбрать вид средней характеристики, адекватный области ее применения. Структурные средние значения мода и медиана характеризуют структуру расположения вариант в упорядоченном массиве опытных данных. Количественное среднее значение дает возможность судить о среднем размере вариант (выборочная средняя).

Для вычисления числовых характеристик рассеяния - выборочной дисперсии, среднего квадратичного отклонения и коэффициента вариации - эффективен табличный способ.

Для выборки можно определить ряд числовых характеристик, которые аналогичны основным числовым характеристикам случайных величин в теории вероятностей (математическое ожидание, дисперсия, среднее квадратическое отклонение, мода, медиана) и являются в некотором смысле (который будет ясен дальше) их приближенным значением.

Пусть дано статистическое распределение выборки объема n для частот и относительных частот:

x i

x 1

x 2

x k

n i

n 1

n 2

n k


x i

x 1

x 2

x k

w i

w 1

w 2

w k

Выборочным средним называется среднее арифметическое значение всех вариант:

Если внести множитель под знак суммы, то получим формулу для выборочного среднего через относительные частоты:

.

Отметим, что в случае интервального ряда выборочное среднее вычисляется по тем же формулам, если в качестве чисел х 1 , … , х k взять середины интервалов: , … ,.

Выборочной дисперсией называется среднее арифметическое квадратов отклонений значений выборки от их выборочного среднего:

Снова внося множитель под знак суммы, получим формулу для выборочной дисперсии через относительные частоты:

Несложные преобразования приводят к более удобной формуле для вычисления выборочной дисперсии

,

где есть выборочное среднее квадрата изучаемой случайной величины, т.е.

Если выборка представлена интервальным статистическим рядом, то формулы для выборочной дисперсии остаются те ми же, где, как обычно, в качестве чисел х 1 , … , х k берутся середины интервалов: , … ,.

Выборочным средним квадратическим отклонением называется квадратный корень из выборочной дисперсии

.

Размахом вариации R называется разность между максимальным и минимальным значением в выборке. Если варианты в выборке ранжированы (размещены в возрастающем порядке), то

.

Коэффициент вариации определяется по формуле

.

Модой М о вариационного ряда называется вариант, имеющий наибольшую частоту (или относительную частоту).

Медианой М е вариационного ряда называется число, являющееся его серединой. Для дискретного ряда с нечетным числом вариант медиана равна его серединному варианту. Если же число вариант четно, то Медина равна среднему (т.е. полусумме) двух серединных вариант.

К основным статистическим характеристикам ряда измерений (вариацион­ного ряда) относятся характеристики положения(средние характе­ристики, или центральная тенденция выборки); характеристики рассеяния(ва­риации, или колеблемости) и характеристики формыраспределения.

К характеристикам положения относятся среднее арифметическое значе­ние (среднее значение), мода и медиана.

К характеристикам рассеяния (вариации, или колеблемости) относятся: размах вариации, дисперсия, среднее квадратическое (стандартное) отклонение, ошибка средней арифметической (ошибка средней), коэффициент вариации и др.

К характеристикам формы относятся коэффициент асимметрии, мера ско­шенности и эксцесс.

51. Оценка параметров генеральной совокупности. Точечная и интервальная оценка. Доверительный интервал. Уровень значимости

Оценка параметров генеральной совокупности

Существуют точечные и интервальные оценки генеральных параметров.

Точечной одним числом . К таким оценкам относятся, например,

Для того чтобы статистические оценки давали «хорошие» приближения оцениваемых параметров, они должны быть:

    несмещенными;

    эффективными;

    состоятельными.

Оценка называется несмещенной, если математическое ожидание ее выборочного распределения совпадает со значением генерального параметра.

Точечная оценка называется эффективной, если она имеет наименьшую дисперсию выборочного распределения по сравнению с другими аналогичными оценками, т.е. обнаруживает наименьшую случайную вариацию.

Точечная оценка называется состоятельной, если при увеличении объема выборочной совокупности она стремиться к величине генерального параметра.

Например, выборочная средняя есть состоятельная, несмещённая оценка генеральной средней. Для выборки из нормальной генеральной совокупности эта оценка является также и эффективной.

При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, т.е. приводить к грубым ошибкам. По этой причине при небольшом объеме выборки следует пользоваться интервальными оценками.

Интервальной называют оценку, которая определяется двумя числами концами интервала доверительного интервала .

Интервальные оценки позволяют установить точность и надежность оценок.

Для оценки генерального параметра с помощью доверительного интервала необходимы три величины:

Например, доверительный интервал для генеральной средней находится по формуле:при уровне значимости.

Доверительный интервал - термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная.

Уровень значимости - это вероятность того, что мы сочли различия существенными, а они на самом деле случайны.

Когда мы указываем, что различия достоверны на 5%-ом уровне значимости, или при р < 0,05 , то мы имеем виду, что вероятность того, что они все-таки недостоверны, составляет 0,05.

Когда мы указываем, что различия достоверны на 1%-ом уровне значимости, или при р < 0,01 , то мы имеем в виду, что вероятность того, что они все-таки недостоверны, составляет 0,01.

Если перевести все это на более формализованный язык, то уровень значимости - это вероятность отклонения нулевой гипотезы, в то время как она верна.

Ошибка, состоящая в той, что мы отклонили нулевую гипотезу, в то время как она верна, называется ошибкой 1 рода. (См. Табл. 1)

Табл. 1. Нулевая и альтернативные гипотезы и возможные состояния проверки.

Вероятность такой ошибки обычно обозначается как α. В сущности, мы должны были бы указывать в скобках не р< 0,05 или р< 0,01, а α< 0,05 или α< 0,01.

Если вероятность ошибки - это α , то вероятность правильного решения: 1-α. Чем меньше α, тем больше вероятность правильного решения.

Исторически сложилось так, что в психологии принято считать низшим уровнем статистической значимости 5%-ый уровень (р≤0,05): достаточным – 1%-ый уровень (р≤0,01) и высшим 0,1%-ый уровень (р≤0,001), поэтому в таблицах критических значений обычно приводятся значения критериев, соответствующих уровням статистической значимости р≤0,05 и р≤0,01, иногда - р≤0,001. Для некоторых критериев в таблицах указан точный уровень значимости их разных эмпирических значений. Например, для φ*=1,56 р=О,06.

До тех пор, однако, пока уровень статистической значимости не достигнет р=0,05, мы еще не имеем права отклонить нулевую гипотезу. Мы будем придерживаться следующего правила отклонения гипотезы об отсутствии различий (Но) и принятия гипотезы о статистической достоверности различий (Н 1).

Характеристики положения дают усредненное представление о характерных значениях, принимаемых случайными величинами. Информации в этих характеристиках тем больше, чем меньшие отклонения от них могут наблюдаться в реальном эксперименте. Показатели, описывающие возможные отклонения значений случайной величины от «средних», называются характеристиками рассеяния. К ним относятся дисперсия, среднеквадратичное отклонение, срединное отклонение, коэффициент вариации и некоторые другие. 2.1. Дисперсия и ее свойства Важнейшей из них является дисперсия. Дисперсией случайной величины £ (обозначение #[£]) называется математическое ожидание квадрата отклонения случайной величины (от своего среднего Отметим некоторые свойства дисперсии. используя свойства математического ожидания, получаем Отметим, что если случайные величины - независимы, то из свойства 3 математического ожидания следует, что и указанное свойство выглядит так: 6. Если д^(х) - обобщенная плотность распределения случайной величины f, то £>[£] может быть вычислена из соотношения Характеристики рассеяния Дисперсия и ее свойства Неравенство Чебышёва в частности, если £ - непрерывная случайная величина с плотностью ж), то если же £ - дискретная случайная величина с рядом распределения Пример t (дисперсия бернуллиевой случайной величины). Пусть (- беонуллиева случайная величина, . В соответствие с соотношением (4), получаем (М= р) Пример 2 (дисперсия биномиальной случайной величины). Если £ - биномиальная с параметрами (п, р), то, как было отмечено выше, (представима в виде где - независимые одинаково распределенные бернуллиевы с параметром р случайные величины. Поэтому (свойство дисперсии 5) Одновременно доказано комбинаторное тождество Пример 3 (дисперсия равномерной на (и, случайной величины). Пусто Имеем Характеристикой рассеяния, тесно связанной с дисперсией, является среднее ква-дратическое отклонение случайной величины". Обладая тем же качественным наполнением (содержа в себе ту же информацию), что и дисперсия, среднее квадратическое отклонение имеет то преимущество, что измеряется в тех же единицах, что и рассматриваемая случайная величина. Отметим, что из свойств дисперсии с очевидностью следует: если только - независимы. В заключение заметим, что если у случайной величины £ существуют то можно построить случайную величину £, обладающую теми же свойствами, что и £, но имеющую стандартные числовые характеристики: М = 0 и D = 1. Достаточно положить Переход от (к £ - т носит название центрирование случайной величины а переход от- нормирование. Таким образом, соотношение (6) описывает процедуру нормирования и центрирования случайной величины Очевидно, что центрирование) не меняет дисперсии, в то время как нормирование, носящее характер масштабного преобразования, изменяет математическое ожидание в о раз. 2.2. Неравенство Чебышёва Из определения дисперсии (1) ясно, что она призвана качественно описывать рассеяние значений случайной величины относительно математического ожидания. Точный вероятностный смысл этого описания дается неравенством Чебышёва, которое мы здесь рассмотрим. Теорема. Пусть случайная величина £ обладает математическим ожиданием А/(£| = т и дисперсией /?(£) = а2. Тогда каково бы ни было е > О Рассмотрим вспомогательную случайную величину г/, заданную соотношением Заметим, что и потому По теореме о математическом ожидании функции от случайной величины получаем откуда или чем и завершается доказательство. Отметим, что неравенство (7) часто используется в эквивалентной форме получающейся из (7) применением очевидного соотношения Неравенство Чебышёва показывает, что чем меньше дисперсия, тем реже значения случайной величины £ «сильно» (больше чем на е) отклоняются от среднего т. При фиксированной дисперсии вероятности отклонений на величину, большую, чем е,тем меньше, чем больше е. Неравенство (7) универсально. Оно не предъявляет никаких требований к характеру распределения случайной величины f - достаточно существования т и а. В силу своей универсальности оно малоинформативно количественно - для разумных значений е оценки вероятностей крайне фубы. Пример. Для нормальной случайной величины с параметрами (0, 1) имеем Характеристики рассеяния Дисперсия и ее свойства Неравенство Чебышёва в то время как неравенство Чебышёва дает что верно, но тривиально. Для этой же случайной величины при е = 3 точное значение вероятности, а соотношение (8) приводит к оценке которая уже значительно лучше предыдущей. Несмотря на достаточно грубый характер оценок (7)-(8), без дополнительных предположений о характере распределения случайной величины неравенство Чебышёва, как показывает следующий пример, улучшить нельзя - оно точное1*. Пример. Пусть (-дискретная случайная величина, принимающая значения вероятностями соответственно. Легко видеть, что. Положим е = I и найдем значение вероятности Имеем Неравенство (7) в этой ситуации дает оценку которая совпадает с точным значением оцениваемой вероятности. 2.3. Другие характеристики рассеяния Из других характеристик рассеяния, часто используемых в приложениях, отметим коэффициент вариации и срединное отклонение (среднее арифметическое отклонение). Пусть у случайной величины £ существует А/[£) = m и = о2. Коэффициентом вариации случайной величины £ называется величина Из (9) легко усмотреть, что описывает рассеяние случайной величины £ в долях по отношению к среднему. Как абсолютный показатель рассеяния коэффициент вариации не очень удобен, однако для совместно центрированных случайных величин (т.е. имеющих одинаковые математические ожидания) он позволяет эффективно сравнивать диапазоны изменения. Пусть у случайной величины £ существует Срединным отклонением Срединное отклонение (/[£] качественно имеет тот же смысл, что и среднеква-дратическос отклонение - чем больше срединное отклонение, тем больше рассеяние, чем меньше срединное отклонение - тем меньше рассеяние. В том смысле, что существует случайная величина для которой в неравенствах (7)-(8) при некотором е достигается знак равенства. Для конкретных классов распределений связь между этими показателями может быть установлена, однако в общем случае удобных для использования на практике соотношений между U и а нет. Пример 1. Пусть (- нормально распределенная случайная величина. Тогда В этом случае Пример 2. Пусть { = Л[-о, о| - равномерно распределенная случайная величина. Тогда U = а/2. Характеристики рассеяния Дисперсия и ее свойства Неравенство Чебышёва Отметим, что и в этом случае Замеченное свойство U неслучайно -оно имеет место для любых случайных величин (конечно, обладающих дисперсией). Теорема. Если у случайной величины £ существует D£ = а2, то М В неравенстве Коши-Буняковского (свойство 6 математического ожидания) положим Ь Тогда откуда

Основными характеристиками рассеивания, применяемых для оценки вариации величин относительно выборочной средней, являются дисперсия, среднеквадратическое отклонение, коэффициент вариации.

1. Дисперсия (от лат. dispersio - рассеяние ) – среднее арифметическое из квадратов отклонений величин x i от их среднего арифметического.

Дисперсия (D) - мера рассеивания (отклонения от среднего), определяется следующим образом - из каждого варианта вычитают среднюю арифметическую, разность возводят в квадрат и умножают на соответствующую ей частоту. Далее определяют сумму всех произведений и делят её на объём совокупности:

Для сгруппированных данных дисперсию определяют:

Размерность дисперсии не совпадает с единицами измерения варьирующего признака.

При решении практических задач помимо использования формул расчета выборочной дисперсии используется величина, которая называется исправленной дисперсией . Дело в том, что значение выборочной дисперсии дает заниженные значения по отношению к действительной дисперсии, поэтому при малых выборках (n < 30) необходимо применять исправленную дисперсию и среднеквадратическое отклонение :

или

2. Выборочное и исправленное среднеквадратическое отклонение (σ, s) – корень квадратный из дисперсии. Размерность среднеквадратического отклонения в отличие от размерности дисперсии совпадает с единицами измерения экспериментальных данных, поэтому его в основном используют для характеристики рассеивания изучаемого признака.

Приведем расчет дисперсии (табл. 5) для примера 1.

Таблица 5

Промежуточные вычисления расчета дисперсии

№п/п Серединные значения, x i Классовые частоты, n i
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
сумма

Дисперсия для сгруппированных данных примера равна:

Среднеквадратическое отклонение соответственно равно:

Исправленное среднеквадратическое отклонение равно:

Заметим, что формулы для вычисления выборочной и исправленной дисперсий отличаются только знаменателями. При достаточно больших n выборочная и исправленная дисперсии мало отличаются, поэтому на практике исправленной дисперсией пользуются, если n < 30 .

3. Коэффициент вариации (v) – является относительной мерой рассеивания признака, используется как показатель однородности выборочных наблюдений (табл. 6).

Коэффициент вариации - это отношение среднеквадратического отклонения к средней арифметической, выраженное в процентах. Кроме того, коэффициент вариации часто используется при сопоставлении (сравнении) степени варьирования различных признаков, выраженных в различных единицах измерения.

Для определения характера рассеивания безразмерный коэффициент вариации v рассчитывают по формуле:

,

где σ – среднеквадратическое отклонение;

Среднее арифметическое выборочных данных.

Наряду с наиболее вероятным значением риска важное значение имеет разброс возможных значений риска относительно его центрального значения. Учет разброса показателей необходим и при решении задач социально-гигиенического мониторинга.

Наиболее распространенными характеристиками разброса случайной величины являются дисперсия и среднеквадратичное отклонение.

Дисперсия случайной величины ξ обозначаемая как D (ξ) (используются также обозначения V (ξ) и σ 2 (ξ)), характеризует наиболее вероятное значение квадрата отклонения случайной величины от своего математического ожидания.

Для дискретной случайной величины, принимающей значения х i с вероятностями р i , дисперсия определяется как взвешенная сумма нитратов отклонений х i от математического ожидания ξ с весовыми коэффициентами, равными соответствующим вероятностям:

D(ξ) =

Для непрерывной случайной величины ξ ее дисперсия определяется по формуле:

D(ξ) =

Дисперсия обладает следующими практически важными свойствами:

1.Дисперсия любой случайной величины неотрицательна:

D(ξ) ≥ 0

2. Дисперсия постоянной величины равна 0:

D(C) = 0

где С - константа.

3. Дисперсия случайной величины ξ равна разности между математическим ожиданием квадрата этой случайной величины и квадратом математического ожидания ξ:

D(ξ) = M [ξ – M (ξ)] 2 = M(ξ 2) – ( .

4. Прибавление константы к случайной величине не изменяет дисперсии; умножение случайной величины на константу а приводит к умножению дисперсии на а 2 :

D(aξ + b) = a 2 D(ξ),

где а и b - константы.

5. Дисперсия суммы независимых случайных величин равна сумме их дисперсий:

где ξ и η - независимые случайные величины.

Среднеквадратичным отклонением случайной величины ξ (используются также термин «стандартное отклонение») называется число σ (ξ) равное квадратному корню из дисперсии ξ:

Среднеквадратичное отклонение измеряет отклонение случайной нвеличины от ее математического ожидания в тех же величинах, в которых измеряется сама случайная величина (в отличие от дисперсии, размерность которой равна квадрату размерности исходной случайной величины). Для нормального распределения среднеквадратичное отклонение равно параметру σ. Таким образом, математическое ожидание и стандартное отклонение представляют собой полный набор характеристик нормального распределения и однозначно определяют вид плотности распределения. Для распределений, отличающихся от нормального, эта пара показателей не является столь же эффективной характеристикой распределения.


В качестве характеристики рассеяния случайной величины используется также коэффициент вариации. Коэффициентом вариации случайной величины ξ имеющей ненулевое математическое ожидание, называется число V (ξ) равное отношению среднеквадратичного отклонения ξ к ее математическому ожиданию:

Коэффициент вариации измеряет рассеяние случайной величины в долях ее математического ожидания и часто выражается в процентах от последнего. Этой характеристикой не следует пользоваться, если математическое ожидание близко к 0 или существенно меньше стандартного отклонения (в этом случае малые ошибки при определении математического ожидания приводят к высокой погрешности для коэффициента вариации), а также, если вид плотности распределении существенно отличается от гауссовского.

Коэффициент асимметрии (As ) определяет 3-ю степень отклонении случайной величины от математического ожидания и определяется по формуле:

На практике этот показатель используется в качестве оценки симметричности распределения. Для любого симметричного распределения он равен 0. Если же плотность распределения несимметрична (что часто может иметь место при оценке риска смерти и рисков, связанных с загрязнением воды и воздуха), то положительный коэффициент асимметрии соответствует случаю, когда левое плечо кривой плотности круче правого, а отрицательный - случаю, когда правое плечо круче левого (рис 4.17).

Для асимметричных распределений стандартное отклонение не является хорошим показателем рассеяния случайной величины. Для характеристики рассеяния в этом случае можно использовать такие показатели, как квартили, квантили и процентили.

Первой квартилью случайной величины ξ, имеющей функцию распределения F(х), называется число Q 1 являющееся решением уравнения

F(Q 1) = 1/4

т. е. такое число, для которого вероятность того, что ξ принимает значения, меньшие Q 1 , равна 1/4, вероятность того, что она принимает значения, большие Q 1 равна 3/4.

Второй квартилью (Q 2 ) случайной величины называется ее медиана, а третьей (Q 3 ) - решение уравнения

F(Q 3) = 3/4

Квартили делят ось абсцисс на 4 интервала: [-∞,Q 1 ], [Q 1 , Q 2 ], [Q 2 , Q 3 ] и [Q 3 , + ∞] в каждый из которых случайная величина попадает c равной вероятностью, а фигуру, ограниченную осью абсцисс и графиком плотности распределения - на 4 области с одинаковой площадью. И интервале между первой и третьей квартилями сосредоточено 50% распределения случайной величины. Для симметричных распределений первая и третья квартили одинаково удалены от медианы.

Квантилью порядка р случайной величины ξ с функцией распределения F(х) называется число х , являющееся решением уравнения

Таким образом, квартили являются квантилями порядка 0,25, 0,5 и 0,75. Если порядок квантили р выражается в процентах, то соответствующие значения х называются процентилями, или р -процентными точками распределения.

На рис. 4.18 показаны, наряду с квантилями, 2,5- и 97,5-процентные точки распределения. Между этими точками сосредоточено 95% распределения случайной величины, поэтому заключенный между ними интервал называют 95 %-м доверительным интервалом среднего (в частности, при оценке рисков - 95 %-м доверительным интервалом риска).

Задача 2. Какие из перечисленных ниже сведений о случайной величине ξ позволяют отвергнуть предположение о том, что она распределена по нормальному закону:

а) ξ - дискретная случайная величина;

б) математическое ожидание ξ отрицательно;

в) распределение ξ унимодально;

г) математическое ожидание ξ не равно ее медиане;

д) коэффициент асимметрии ξ отрицателен;

е) стандартное отклонение ξ больше ее математического ожидания;

ж) ξ характеризует распределение продолжительности острых заболеваний органов дыхания на исследуемой территории;

з) ξ характеризует распределение продолжительности жизни на исследуемой территории;

и) медиана ξ не совпадает с центром интервала между первой и третьей квартилями.

Ответ: Предположение о нормальном законе распределения случайной величины несовместимо с утверждениями а), г), д), з), и).

Рис. 4.17. Зависимость между знаком Рис.4.18. Квартили и процентили:

коэффициента асимметрии и формой иллюстрация с помощью функции

функции плотности распределения


Close