Самый передовой тип или профиль зубьев

В роторе используется оптимизированный профиль третьего поколения с соотношением числа зубьев 5:6. Это позволяет обеспечить оптимальное зацепление, максимальную площадь контакта, меньшую длину и площадь утечки, более низкий перепад давления на зубьях и, как следствие, более высокую производительность.

Точная инженерная проработка

Поскольку ротор разработан с относительно низкой степенью вытяжки, он меньше подвержен воздействию изгибного напряжения, имеет низкую частоту вращения, низкий уровень шума и продолжительный срок эксплуатации. Такая конструкция позволяет избежать проблем, которые могут возникнуть при использовании ротора небольшого диаметра в целях экономии средств, особенно при эксплуатации с высокой частотой вращения. Ротор подвергается высокоточной механической обработке и проверке динамической балансировки, он используется в сочетании с подшипниками для тяжелых условий эксплуатации. Рама машины интегрированного типа обрабатывается до высокой точности и обеспечивает соосность винтов и зазоры между ними, увеличивая, таким образом, эффективность сжатия.

Эффективная система фильтрации и сепарации

  • Воздушный фильтр с отверстиями 1 мкм и масляный фильтр с отверстиями 10 мкм отличаются высокой пропускной способностью и обеспечивают длительный срок безопасной эксплуатации установки.
  • Масло и воздух проходят первичную очистку вихревого типа, а затем - вторичную окончательную сепарацию, при этом обеспечивается содержание масла в выходящем воздухе менее 3 ppm.
  • Если предусмотрен фильтр глубокой очистки, то содержание масла уменьшается до 0,001 ppm.
  • В качестве опции возможна установка такого фильтра, после которого качество воздуха будет соответствовать потребностям Заказчика.

Первоклассное технологическое оборудование

Специализированные, технически сложные машины и оборудование используются для обеспечения соответствия расчетным требованиям высокой точности. В процессе обработки поверхности зубьев для точной шлифовки и резки применяется винтовой заточной станок. Рама машины также подвергается обработке.

Машина с оптимальными функциями

В роторе использован оптимизированный профиль третьего поколения с соотношением числа зубьев 5:6. Это обеспечивает оптимальное зацепление, максимальную площадь контакта, меньшую длину и площадь утечки, более низкий перепад давления на зубьях и, как следствие, более высокую производительность.

Передовая технология производства и обработки материалов.

Оптимальная конструкция подшипникового узла обеспечивает продолжительный срок эксплуатации.

Точная шлифовка и резка при обработке поверхности зубьев, обработка каркаса на станках с цифровым управлением. Испытательное оборудование высшего качества способствует экономии в потреблении электроэнергии, снижению уровня шума и обеспечению более высокого качества.

Прочность и надежность позволяют заменить этим устройством изделия импортных брендов. Оно используется в локомотивах в качестве важнейшей части тормозной системы.

Выход воздуха в верхней части

  • Оптимальная конструкция системы циркуляции воздуха обеспечивает необходимый поток воздуха из холодной в горячую зону, снижая температуру в нижней части рамы.
  • Охлаждающий воздух поступает из нижней поперечной части агрегата, а горячий воздух выходит из верхней части в целях обеспечения необходимой вторичной обработки и повторного использования горячего воздуха.

Надежное подключение

  • Жесткое соединение и автоматическое выравнивание двигателя и центральной ЭВМ для обеспечения стабильной безопасности.
  • Импортное гибкое муфтовое соединение, поглощающее воздействия, демпфирующее колебания, обеспечивает эффективную передачу.

Звукоизолирующий кожух

  • Встроенная высокоэффективная система поглощения шума, противопожарный звукоизолирующий материал.
  • Стандартный звукоизолирующий кожух для минимизации шума.
  • Эргономичный дизайн для обеспечения удобной эксплуатации и технического обслуживания.

Высококачественная система охлаждения

  • Применена панельная конструкция, маслоохладитель и доохладитель встроены для обеспечения компактности конструкции и высокой эффективности теплообмена.
  • Качественные материалы и точно выверенный процесс обеспечивают высокую прочность на сжатие и коррозионную стойкость охладителя.
  • Импортный вентилятор известной торговой марки обеспечивает высокую эффективность и низкий уровень шума.
  • Оптимизированная конструкция обеспечивает более низкую рабочую температуру компрессора и температуру подаваемого воздуха, предотвращает поступление влаги в систему циркуляции масла.

Специальный электродвигатель

  • Высокопроизводительный, прочный и долговечный
  • Внешнее смазочное отверстие для удобства эксплуатации и технического обслуживания
  • Изоляция F класса, класс защиты IP54.

Уникальное демпфирующее устройство

  • Уникальная трехпозиционная опора с использованием амортизатора.
  • Высококачественная демпферная система для амортизации вибрации подвижных частей и окончательного устранения вибрации и снижения шума.

Интеллектуальная система управления

  • Управление с помощью ПЛК, функционирование в автоматическом режиме, интеллектуальная работа. Все основные ключевые блоки и части - импортные, известных торговых марок для обеспечения надежной эксплуатации системы управления
  • Предусмотрены различные режимы работы: включение/выключение, непрерывный и автоматический режимы работы в целях снижения эксплуатационных затрат.
  • Защита фазировки, защита от перегрузки.
  • Автоматическая регулировка объема воздуха.
  • Автоматический защитный останов и сигнализация превышения давления и перегрева.
  • Сигнализация и защита блокировки сепаратора «масло-воздух» и защита блокировки фильтра.
  • Возможность подключения к сети, дистанционное управление и управление с взаимной блокировкой.

Технические характеристики винтового компрессора

Модель Мощность двигателя Давление на выходе Производительность атмосферного воздуха Номинальная скорость Габаритные размеры Соединения Уровень шума Масса
кВт МПа (м²/мин) (об/мин) (мм) дБ (А) (кг)
1 7,5 0,7 1,2 1440 770 х 700 х 980 Rp 1/2 67 350
1 1
1,3 0,8
0,8 1,1
2 11 0,7 1,9 1460 910 х 860 х 1400 Rp 1 69 420
1 1,6
1,3 1
0,8 1,8
3 15 0,7 2,6 1460 910 х 860 х 1400 Rp 1 70 450
1 2,1
1,3 1,6
0,8 2,4
4 18,5 0,7 3 2930 1130 х 900 х 1430 Rp 1 ¼ 72 650
1 2,6
1,3 1,9
0,8 2,8
5 22 0,7 3,6 2940 1130 х 900 х 1430 Rp 1 ¼ 72 700
1 3,1
1,3 2,5
0,8 3,4
6 30 0,7 5,2 1470 1290 х 995 х 1420 Rp 1 ½ 72 850
1 4,3
1`,3 3,6
0,8 4,9
7 37 0,7 6,4 2950 1290 х 995 х 1420 Rp 1 ½ 75 900
1 5,5
1,3 4,6
0,8 5,8
8 45 0,7 7,5 1470 2000 х 1200 х 1798 Rp 2 75 1950
1 6,6
1,3 5,2
0,8 7,2
0,5 8,7
9 55 0,7 10,2 2970 2000 х 1200 х 1798 Rp 2 75 1990
1 8,2
1,3 7,2
0,8 9,5
10 75 0,7 13,5 2970 2000 х 1200 х 1798 Rp 2 76 2100
1 11,5
1,3 9,5
0,8 12,4
11 90 0,7 16,5 1480 2000 х 1400 х 1998 Rp 2 ½ 78 2200
1 13,7
1,3 11,5
0,8 15,5
12 110 0,7 20 1480 2000 х 1400 х 1998 Rp 2 ½ 78 2500
1 17
1,3 14
0,8 18,5
13 132 0,7 23,5 1480 2000 х 1400 х 1998 Rp 2 ½ 80 2600
1 20,5
1,3 16,6
0,8 22,5
14 250 0,7 42 1485 3500 х 1800 х 2180 Rp 4 85 4500
1 38,1
1,3 34,6
0,8 40,5

Определение давления

При определении необходимого рабочего давления для обеспечения соответствия потребности оборудования в воздухе необходимо учитывать перепад давления вследствие различного диаметра и длины трубопроводов, сопротивление потоку и потери давления в оборудовании доочистки.

Если рабочее давление значительно меняется в различных блоках оборудования, необходимо рассмотреть возможность применения воздушных компрессоров различного давления.

Выбор модели

Расчет объема воздуха производится согласно стандарту «Руководство по проектированию воздушных компрессорных станций». Предпочтительно, чтобы объем был равен фактическому общему используемому объему плюс допуск. (Стандарт GB/T3853-eqv-ISO1217 можно применять в отношении всех объемов выходящего воздуха, указанных в каталоге компании).

Выберите подходящий воздушный компрессор из перечня, приведенного в таблице, исходя из объема воздуха и давления.

Качество и требования к сжатому воздуху

Большое количество влаги, присутствующей в сжатом воздухе, наносит серьезные повреждения высокоточным измерительным приборам, пневматическому инструменту, пневматическому оборудованию, клапанам, счетчикам и трубопроводам, поскольку влага может вызвать ржавчину и коррозию, загрязнение приборов. Это приводит к снижению качества продукта и повреждению оборудования, в результате чего могут возникнуть значительные расходы на ремонт и техническое обслуживание. Поэтому после воздушного компрессора необходимо предусмотреть систему очистки сжатого воздуха, там, где это требуется в соответствии с условиями эксплуатации.

Место установки

Место установки должно быть просторным и хорошо освещенным для обеспечения простоты эксплуатации и технического обслуживания.

На месте установки должна быть низкая температура, незначительный уровень запыленности, приточный воздух и хорошая вентиляция.

Главным элементом любого является компрессор. Он служит для обеспечения движения хладагента в системе и создания разности давлений.

Относительно недавно стали применяться в холодильной технике компрессоры спирального типа. В основном они работают в составе систем кондиционирования, тепловых насосов, средне и высокотемпературных холодильных установок.

Рабочим элементом спирального компрессора является спираль. Принцип работы холодильного спирального компрессора основан на согласованном вращении одной спирали относительно другой.

Принцип работы спирального холодильного компрессора.

В спиральном компрессоре сжатие паров хладагента происходит между двумя спиралями.

Одна спираль неподвижная, вторая - совершает вращение вокруг неё. Причем это движение имеет непростую траекторию. Электродвигатель, находящийся в одном герметичном корпусе компрессора, совершает работу - вращает вал, на конце которого находится эксцентрично установленная спираль. Вращаясь, подвижная спираль перекатывается по стенкам неподвижной спирали, скользя по масленой плёнке. Точки контакта спиралей постепенно перемещаются от края к центру, причем они расположены на каждом витке рабочего элемента. Захватывая всасываемые пары хладагента в зоне большего объема сжимаемого газа, спирали постепенно сжимают их по мере приближения рабочей зоны к центру, так как объем её уменьшается. Соответственно, в центре спиралей достигается максимальное давление газа, который через линию нагнетания компрессора затем поступает в конденсатор. В спиральном компрессоре, в процессе работы, сжатие паров происходит непрерывно, так как точка касания спиралей не одна и рабочих зон сжатия образуется несколько. Электродвигатели герметичных спиральных компрессоров охлаждаются за счет всасывающих паров хладагента.

Рассмотрим устройство спирального холодильного компрессора на примере продукции . Устройство компрессоров других производителей аналогично. Основные узлы спирального компрессора показаны на рисунке 2.


Рисунок 2. Устройство спирального холодильного компрессора.

Благодаря своей конструкции, количество взаимно трущихся деталей в спиральном компрессоре значительно меньше, чем в что теоретически говорит о его надежности.

Также к достоинствам конструкции можно отнести отсутствие мертвого вредного пространства в зоне сжатия, что увеличивает эффективность работы.

Благодаря тому, что в процессе сжатия газа образуются одновременно несколько рабочих зон, пары хладагента нагнетаются равномерней, чем в поршневых компрессорах и меньшими рабочими объемами, что снижает нагрузку на электродвигатель.

Для повышения эффективности работы, большое внимание в спиральных компрессорах уделяется герметизации боковых и торцевых поверхностей контактов спиралей, для уменьшения перетечек газа между соседними зонами сжатия.

Спиральные компрессоры изначально проектировались и нашли своё наибольшее применение в области высоко- и средне-температурных холодильных систем - это кондиционирование воздуха, чиллеры, тепловые насосы. Но и в низкотемпературных холодильных установках они также используются, благодаря технологии впрыска малого количества хладагента в центр спиралей в процессе работы.

Регулирование производительности спиральных компрессоров возможно с помощью частотных преобразователей, изменяя скорость вращения вала. Кроме этого, производитель спиральных компрессоров Copeland , разработал технологию регулировки производительности за счет изменения расстояния между спиралями во время вращения. Эта технология позволяет работать спиральному компрессору в холостую, вообще не образуя рабочих зон сжатия.

На сегодняшний день спиральные холодильные компрессоры производят и поставляют в Россию и соответственно в Челябинск такие всемирно известные фирмы, как , Danfoss Performer , .

На этой странице представлена полезная информация о винтовых компрессорах. Вы узнаете о принципе действия, области применения, исполнении и преимуществах. Выбрать компрессор вы можете на странице нашего каталога >>>

Принцип действия

В винтовых компрессорах сжатие воздуха происходит за счет уменьшения объёма полостей сжатия – канавок, образуемых поверхностями двух винтовых элементов и стенками корпуса винтового блока. Исходя из принципа действия, эти компрессоры относят к компрессорам объемного действия.

В этом разделе рассматриваются наиболее распространенные воздушные винтовые компрессоры для сжатия воздуха, при этом в винтовом блоке вместе в воздухом присутствует небольшое количество масла. Масло выполняет несколько функций:

  • обеспечивает масляные зазоры между элементами винтового блока, исключая сухое трение;
  • отводит тепло, выделяющиеся в процессе сжатия;
  • герметизирует винтовой блок;
  • смазывает подшипники винтового блока.

Такие компрессоры называются масляными или маслосмазываемыми (oilinjected).

Ниже представлена схема работы масляного винтового компрессора:


1. Воздушный фильтр 2. Регулятор всасывания 3. Винтовой блок 4. Муфта для передачи вращения от двигателя
5. Двигатель 6. Маслобак-сепаратор 7. Клапан минимального давления 8. Вентилятор охлаждения 9. Концевой охладитель 10. Сепаратор влаги (опционально) 11. Клапан автоматического слива конденсата 12. Шаровой кран
13. Масляный радиатор 14. Воздушно-масляный сепаратор 15. Масляный фильтр 16. Термостат
17. Осушитель (опционально)

Атмосферный воздух поступает в винтовой блок (поз.3) через воздушный фильтр (поз.1) и регулятор всасывания (поз. 2). Воздушный фильтр позволяет очищать всасываемый воздух от крупных частиц пыли, тем самым, исключая их попадание в винтовой блок. Регулятор всасывания позволяет переводить работу оборудования оборудования компрессора на холостой ход, когда сжатый воздух не потребляется.

Подаваемый винтовым блоком воздух, очищается от масла в баке-сепараторе (поз.6 на схеме), где крупные капли масла оседают на его стенках, а мелкие задерживаются специальным фильтром (поз.14) и отсасываются на вход блока. Специальный клапан на баке (поз.7) поддерживает в нем давление в несколько атм, т.е. даже если давление в пневмомагистрали упадет почти до атмосферного, то минимальное давление с несколько атм в баке-сепараторе все равно будет присутствовать. Это давление обеспечивает подачу масла обратно в блок. При нагревании масла выше определенной температуры, оно охлаждается в масляном радиаторе (поз13).


Выдаваемый компрессором воздух охлаждается в концевом охладителе (поз.9) и далее направляется в пневмосистему. Воздух может быть очищен специальными устройствами, входящими в корпус компрессора – сепаратор (поз.10) и осушитель (поз.17), которые также могут быть установлены и вне компрессора.

Принцип работы винтового компрессора был предложен около 100 лет назад, но технология изготовления качественных винтовых элементов с высокими требованиями к точности изготовления сложной поверхности появилась только во второй половине 20 века. Изготовление винтовых блоков – это технология, включающая в себя операции фрезерования, шлифования на высокоточных станках с последующим контролем на каждом этапе изготовления. Только предприятия с высоким объемом продаж могут позволить себе оснастить своё предприятия оборудованием для производства винтовых блоков. К таким предприятиям относятся FINI (Италия), CompAir (Германия), Rotair (Италия), AtlasCopco и некоторые другие.

Преимущества винтовых компрессоров

1) Подача сжатого воздуха винтовым блоком происходит с частотой, более 100 импульсов в секунду, поэтому можно говорить, что компрессор подает воздух равномерно. Все рабочие движения в винтовом компрессоре винтового типа вращательные, поэтому оборудование не создает сильных вибраций на фундамент, а уровень шума у него приемлемый. Все это привело к возможности ставить компрессоры ближе к потребителю воздуха .

2) Винтовые маслосмазываемые компрессоры выдают более чистый воздух , чем традиционные поршневые, но масло все же присутствует – не более 3 мг/м3 при отсутствии дополнительных фильтров.

3) Обладают достаточно высокой экономичностью , при этом в широком диапазоне производительностей. Винтовые компрессоры изготавливаются в диапазоне мощностей от 2 кВт до мегаватт, при этом и технические и экономические характеристики мелких аппаратов так же хороши, как и у старших моделей.

4) Винтовые маслосмазываемые компрессоры не требуют сложного техобслуживания (ТО). Стандартно меняются масло, воздушный фильтр, масляный фильтр и масляный сепаратор. Другие детали с ограниченным ресурсом меняются редко и не требуют специальных навыков и инструментов. Стандартный интервал сервисного обслуживания составляет 2000-4000 часов, при 200-500 часов у поршневого компрессора.

5) Применение различных опций для снижения энергозатрат: использование сжатого воздуха в системе рекуперации тепла, применение частотного регулирование привода и т.п. Тепло, выделяемое от оборудования, может быть направлено на обогрев помещений, для подачи горячей воды в душевые и для других применений. Использование частотного преобразователя позволяет вырабатывать столько сжатого воздуха, сколько требуется потребителю, таким образом, экономия электроэнергии может достигать до 33 %.

Также к преимуществам винтового компрессора данного типа относятся: меньшая масса и габариты , более высокий ресурс работы, возможность непрерывной работы 24 часа в сутки . Машины высокой мощности не требуют водяного охлаждения , что снижает общие затраты на монтаж и эксплуатацию винтового компрессора.

Компоновка, исполнения

Влияние на потребительские характеристики компрессора оказывает привод винтового блока. Так установки с ременным приводом в общем более компактны и позволяют производить различные варианты «давление-производительность» путем изменения диаметров шкивов. Компрессоры же с прямым приводом более экономичны и, как правило, не требуют специального обслуживания по замене.

С ременным приводом С прямым приводом

Ввиду универсальности применения, аппараты средних и малых мощностей могут быть скомпонованы с осушителями воздуха, а более мелкие – еще и с ресиверами.

Исполнение на раме Исполнение на раме с осушителем Исполнение на ресивере с осушителем

Исполнение винтового компрессора

В данной статье мы расскажем об основных элементах конструкции винтового компрессора и о его устройстве.

В настоящее время производством винтовых компрессоров занимается достаточно большое количество компаний по всему миру. Однако, как автомобиль состоит из кузова, двигателя и трансмиссии, так и винтовой компрессор разных производителей состоит из компонентов, имеющих различия в конструкции, но выполняющих одну и ту же задачу при работе агрегата.

Любой винтовой компрессор может быть схематично представлен следующим образом:

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – электродвигатель

5 – масляный резервуар

6 – сепаратор

7 – клапан минимального давления

8 – термостат

9 – масляный фильтр

10 – воздушный радиатор

11 – масляный радиатор

12 – вентилятор

13 – обратный клапан

14 – сетчатый фильтр

15 – выход сжатого воздуха

Входной фильтр

На входе винтового компрессора обязательно устанавливается фильтр, задачей которого является предотвращение проникновения в компрессор вместе с засасываемым воздухом пыли и твердых механических частиц.

Он представляет собой, как правило, цилиндрический патрон из гофрированной бумаги и может устанавливаться как открыто, так и в корпусе.

Размер ячейки входного фильтра в большинстве случаев составляет 10 мкм, а площадь его поверхности соответствует производительности компрессора.

Всасывающий клапан

Наличие на входе винтового компрессора всасывающего клапана (иногда его еще называют регулятором всасывания) является отличительной особенностью компрессоров данного типа. Закрытие и открытие всасывающего клапана позволяет легко переводить компрессор в режим холостого хода и работы под нагрузкой соответственно.

Запорный элемент всасывающего клапана имеет вид поворотного (заслонки) или поступательно двигающегося диска с уплотнением. Положение запорного элемента изменяется под действием сжатого воздуха, подаваемого во внутренний или внешний пневмоцилиндр из масляного резервуара через управляющий электромагнитный клапан.

Запуск винтового компрессора всегда происходит при закрытом всасывающем клапане. Но для того, чтобы в масляном резервуаре произошло накопление сжатого воздуха с давлением, достаточным для последующего воздействия на поршень управляющего пневмоцилиндра, всасывающий клапан имеет канал небольшого сечения с обратным клапаном.

Основным рабочим элементом компрессора является винтовой блок, в котором собственно и происходит процесс сжатия всасываемого через входной фильтр воздуха.

В корпусе винтового блока расположены два вращающихся ротора – ведущий и ведомый. При их вращении происходит движение воздуха от всасывающей стороны к нагнетающей с одновременным уменьшением объема межроторных полостей, т.е. сжатие.

Зазор между роторами уплотняется находящимся в корпусе винтового блока маслом. Масло также служит для смазывания подшипников и отвода тепла, образующегося при сжатии воздуха.

Также существуют безмасляные винтовые компрессоры классического исполнения (без уплотняющей жидкости) и с водяным впрыском в камеру сжатия вместо масла.

Для передачи вращения ведущему ротору винтового блока, как правило, используется обычный трехфазный асинхронный электродвигатель.

Исключение составляют мобильные винтовые компрессоры, в которых в качестве источника вращения используется дизельный двигатель.

Вращение от вала двигателя ведущему ротору винтового блока может передаваться как при помощи клиноременной передачи:

или через муфту с эластичным элементом (так называемый «прямой привод»).

В некоторых случаях применяется шестеренчатый привод (в компрессорах большой производительности).

Нередко бывает необходимо регулировать производительность винтового компрессора, изменяя частоту вращения вала двигателя. В этом случае электропитание двигателя осуществляют при помощи специального устройства – частотного преобразователя.

Применение частотного преобразователя позволяет в широких пределах регулировать производительность винтового компрессора в зависимости от реальной потребности в сжатом воздухе, не прибегая к переводу агрегата в режим холостого хода закрытием всасывающего клапана.

Масляный резервуар играет очень важную роль в работе винтового компрессора:

  • выполняет роль первичного аккумулятора сжатого воздуха;
  • увеличивает объем масляной системы компрессора и, соответственно, количества масла, необходимого для эффективного отвода тепла, образовывающегося при сжатии воздуха;
  • работает, как отделитель основной массы масла от сжатого воздуха, т.к. масло-воздушный поток попадает в резервуар из винтового блока по касательной к его цилиндрической поверхности – как бы «закручивается».

Сепаратор

Для того, чтобы выходящий из винтового компрессора сжатый воздух содержал минимальное количество масла, в его конструкции обязательно применяется сепаратор.

Сепаратор может быть внешним (в компрессорах небольшой мощности) и встроенным в масляный резервуар.

Внешний вид встроенного сепаратора:

Сепаратор в разрезе с указанием потока масла и воздуха:

Благодаря наличию в конструкции винтового компрессора сепаратора содержание масла в сжатом воздухе на выходе не превышает 3 мг/м 3 .

Для нормальной циркуляции масла при работе винтового компрессора необходимо, чтобы давление в масляном резервуаре не опускалось ниже определенного минимально необходимого уровня.

Когда в магистрали, на которую работает винтовой компрессор, уже присутствует давление, это условие выполняется. А вот в случае, когда компрессор используется для заполнения пустого воздухосборника, для создания в масляном резервуаре повышенного давления используется клапан минимального давления.

Этот клапан открывается при давлении на его входе, превышающем определенное значение, которое задается регулировкой сжатия закрывающей клапан пружины. Типичным для винтовых компрессоров давлением открытия клапана является значение 4÷4,5 бар.

Термостат

В винтовом компрессоре, как и в двигателе автомобиля, существует два круга системы охлаждения – малый и большой.

Сразу после запуска компрессора масло в нем циркулирует по малому кругу, что обеспечивает довольно быстрый рост температуры. Это необходимо, чтобы при сжатии воздуха не происходило выпадение конденсата и смешивание его с маслом, значительно ухудшающее его эксплуатационные свойства.

После достижения определенного значения температуры масла термостат открывается, направляя поток циркуляции по большому кругу – через охлаждаемый вентилятором радиатор.

Как правило, открытие термостата начинается при температуре масла +55°С и полностью завершается при температуре +70°С.

Масляный фильтр

В процессе работы винтового компрессора в масле могут присутствовать механические примеси – продукты износа движущихся частей и частицы пыли, размер которых меньше размера ячейки входного фильтра.

Для очистки масла от этих примесей в циркуляционный контур компрессора включается масляный фильтр.

Воздушный радиатор / Масляный радиатор / Вентилятор

Для охлаждения сжимаемого винтовым компрессором воздуха его пропускают через радиатор, который обдувается вентилятором. Температура сжатого воздуха на выходе компрессора, как правило, превышает температуру окружающей среды не более, чем на 20÷30 °С.

Для охлаждения циркулирующего в компрессоре масла служит масляный радиатор. Обычно воздушный и масляный радиаторы объединены в единый блок и обдуваются одним вентилятором (двумя в компрессорах большой мощности).

Обычно вентилятор приводится в действие отдельным электродвигателем.

В небольших компрессорах зачастую для обдува радиаторов используется вентилятор, входящий в состав приводного двигателя.

Сетчатый фильтр

Масло, отделяемое от сжатого воздуха в сепараторе, требуется вернуть в циркуляционный контур компрессора. Для этого используется специальная масловозвратная линия, имеющая в своем составе обратный клапан и сетчатый фильтр.

Для того, чтобы процесс возврата масла можно было наблюдать в реальном времени (это необходимо в диагностических целях), некоторые детали масловозвратной линии выполняют прозрачными.

Выход сжатого воздуха

На выходной патрубок винтового компрессора необходимо установить запорный кран, позволяющий отключить компрессор от магистрали сжатого воздуха на время проведения технического обслуживания или ремонта.

Также для соединения выхода компрессора с магистралью рекомендуется использовать гибкое соединение (металлорукав) для устранения влияния температурных и вибрационных деформаций трубопровода на соединение.

На этом все.

Мы рассмотрели основные компоненты конструкции винтового компрессора и их назначение. В следующих статьях мы рассмотрим устройство данных узлов более подробно.

Все возникшие вопросы вы можете задать в форме ниже. Мы ответим в течение 1-2 рабочих дней.

С уважением,

Константин Широких & Сергей Борисюк

Компрессоры винтового типа относятся к классу ротационного оборудования . Принцип работы таких устройств основан на вращении двух роторов , которые и называют винтами. Первый образец был выпущен еще в 1934 году шведом Элиотом Лисхольном. С тех пор изобретение перетерпело множество изменений, но принцип действия остался прежним.

На сегодняшний день винтовые агрегаты практически полностью вытеснили другие типы компрессоров с мобильных станций, судовых рефрижераторов, из пищевого, стекольного, химического производства, других отраслей промышленности.

Предлагаем посмотреть видеоматериал про устройство и принцип работы винтовых компрессоров

Преимущества

Винтовые компрессоры сконструированы таким образом, чтобы производительность и ресурс двигателей малой мощности росли, а энергопотребление снижалось вполовину. К преимуществам такого рода оборудования относятся компактные размеры, не слишком отягощающий вес, надежность, долговечность .

Винтовые агрегаты не требуют непрерывного обслуживания, поскольку способны длительное время работать в автономном режиме. Они быстро монтируются в собственных рамах без специально обустроенного фундамента, минимально вибрируют при функционировании.

Винтовые типы оснащаются изолирующими шум кожухами, работают тише прочих. В цехах с ними сохраняются максимально комфортные условия для людей.

Большинство представителей описываемого класса оснащаются цифровой платой управления. За счет этого легко менять давление, программировать циклы процессов на таймер, регулировать потребление энергии. Производить действия можно удаленно.

Среди главных преимуществ нельзя не отметить низкий расход масла. На 1 м3 уходит примерно 2-3 мг смазочного материала, что в разы меньше, чем у модификаций. Данный показатель важен для качества выходящего воздуха. работает чище других, а значит, не нуждается в дополнительных фильтрах, может применяться даже для пневматических машин.

Воздушный принцип охлаждения избавляет от необходимости встраивать систему оборотного водоснабжения и позволяет использовать тепло компрессора вторично (например, для обогрева цехов).

Рассказ про компрессоры одного из производителей от специалиста

Устройство и принцип работы

Сжатые воздух и газ заставляют функционировать сложные системы исполнения из пневматических цилиндров, клапанов и прочих механизмов. Винтовой компрессор занимается преобразованием электрической энергии в воздушно-газовый толчок.

Составные части

Любая модель винтового компрессора включает основополагающие детали.


Close