Для полного описания механизма исследуемого случайного эксперимента недостаточно задать лишь пространство элементарных событий. Очевидно, наряду с перечислением всех возможных исходов исследуемого случайного эксперимента мы должны также знать, как часто в длинной серии таких экспериментов могут происходить те или другие элементарные события. Действительно, возвращаясь, скажем, к примерам 4.1-4.7, легко представить себе, что в рамках каждого из описанных в них пространств элементарных событий можно рассмотреть бесчисленное множество случайных экспериментов, существенно различающихся по своему механизму.

Так, в примерах 4.1-4.3 мы будем иметь существенно различающиеся относительные частоты появления одних и тех же элементарных исходов, если будем пользоваться различными моментами и игральными костями (симметричными, со слегка смещенным центром тяжести, с сильно смещенным центром тяжести и т. п.) В примерах 4.4-4.7 частота появления дефектных изделий, характер засоренности дефектными изделиями проконтролированных партий и частоты появления определенного числа сбоев станков автоматической линии будут зависеть от уровня технологической оснащенности изучаемого производства: при одном и том же пространстве элементарных событий частота появления «хороших» элементарных исходов будет выше в производстве с более высоким уровнем технологии.

Для построения (в дискретном случае) полной и законченной математической теории случайного эксперимента - теории вероятностей помимо уже введенных исходных понятий случайного эксперимента, элементарного исхода и случайного события необходимо запастись еще одним исходным допущением (аксиомой), постулирующим существование вероятностей элементарных событий (удовлетворяющих определенной нормировке), и определением вероятности любого случайного события.

Аксиома.

Каждому элементу пространства элементарных событий соответствует некоторая неотрицательная числовая характеристика шансов его появления, называемая вероятностью события , причем

(отсюда, в частности, следует, что для всех ).

Определение вероятности события.

Вероятность любого события А определяется как сумма вероятностей всех элементарных событий, составляющих событие А, т. е. если использовать символику для обозначения «вероятности события А», то

Отсюда и из (4.2) непосредственно следует, что всегда причем вероятность достоверного события равна единице, а вероятность невозможного события равна нулю.

Все остальные понятия и правила действий с вероятностями и событиями будут уже производными от введенных выше четырех исходных определений (случайного эксперимента, элементарного исхода, случайного события и его вероятности) и одной аксиомы.

Таким образом, для исчерпывающего описания механизма исследуемого случайного эксперимента (в дискретном случае) необходимо задать конечное или счетное множество всех возможных элементарных исходов и каждому элементарному исходу поставить в соответствие некоторую неотрицательную (не превосходящую единицы) числовую характеристику интерпретируемую как вероятность появления исхода причем установленное соответствие типа должно удовлетворять требованию нормировки (4.2).

Вероятностное пространство как раз и является понятием, формализующим такое описание механизма случайного эксперимента. Задать вероятностное пространство - это значит задать пространство элементарных событий Q и определить в нем вышеуказанное соответствие типа

Очевидно, соответствие типа (4.4) может быть задано различными способами: с помощью таблиц, графиков, аналитических формул, наконец, алгоритмически.

Как же построить вероятностное пространство, соответствующее исследуемому реальному комплексу условий? С наполнением конкретным содержанием понятий случайного эксперимента, элементарного события, пространства элементарных событий, а в дискретном случае - и любого разложимого случайного события затруднений, как правило, не бывает. А вот определить из конкретных условий решаемой задачи вероятности отдельных элементарных событий не так-то просто! С этой целью используется один из следующих трех подходов.

Априорный подход к вычислению вероятностей заключается в теоретическом, умозрительном анализе специфических условий данного конкретного случайного эксперимента (до проведения самого эксперимента). В ряде ситуаций этот предопытный анализ позволяет теоретически обосновать способ определения искомых вероятностей.

Например, возможен случай, когда пространство всех возможных элементарных исходов состоит из конечного числа N элементов, причем условия производства исследуемого случайного эксперимента таковы, что вероятности осуществления каждого из этих N элементарных исходов нам представляются равными (именно в такой ситуации мы находимся при подбрасывании симметричной монеты, бросании правильной игральной кости, случайном извлечении игральной карты из хорошо перемешанной колоды и т. п.). В силу аксиомы (4.2) вероятность каждого элементарного события равна в этом случае MN. Это позволяет получить простой рецепт и для подсчета вероятности любого события: если событие А содержит NA элементарных событий, то в соответствии с определением (4.3)

Смысл формулы (4.3) состоит в том, что вероятность события в данном классе ситуаций может быть определена как отношение числа благоприятных исходов (т. е. элементарных исходов, входящих в это событие) к числу всех возможных исходов (так называемое классическое определение вероятности). В современной трактовке формула (4.3) не является определением вероятности: она применима лишь в том частном случае, когда все элементарные исходы равновероятны.

Апостериорно-частотный подход к вычислению вероятностей отталкивается, по существу, от определения вероятности, принятого так называемой частотной концепцией вероятности (подробнее об этой концепции см., например, в , ). В соответствии с этой концепцией вероятность определяется как предел относительной частоты появления исхода в процессе неограниченного увеличения общего числа случайных экспериментов т. е.

(4.5)

где - число случайных экспериментов (из общего числа произведенных случайных экспериментов), в которых зарегистрировано появление элементарного события Соответственно для практического (приближенного) определения вероятностей предлагается брать относительные частоты появления события в достаточно длинном ряду случайных экспериментов

Подобный способ вычисления вероятностей не противоречит современной (аксиоматической) концепции теории вероятностей, поскольку последняя построена таким образом, что эмпирическим (или выборочным) аналогом объективно существующей вероятности любого события А является относительная частота осуществления этого события в ряду из независимых испытаний. Разными в этих двух концепциях оказываются определения вероятностей: в соответствии с частотной концепцией вероятность не является объективным, существующим до опыта, свойством изучаемого явления, а появляется только в связи с проведением опыта или наблюдения; это приводит к смешению теоретических (истинных, обусловленных реальным комплексом условий «существования» исследуемого явления) вероятностных характеристик и их эмпирических (выборочных) аналогов. Как пишет Г. Крамер, «указанное определение вероятности можно сравнить, например, с определением геометрической точки как предела пятен мела неограниченно убывающих размеров, но подобного определения современная аксиоматическая геометрия не вводит» (). Мы не будем здесь останавливаться на математических изъянах частотной концепции вероятности. Отметим лишь принципиальные сложности реализации вычислительного приема получения приближенных значений с помощью относительных частот . Во-первых, сохранение неизменными условий случайного эксперимента (т. е. сохранение условий статистического ансамбля), при котором оказывается справедливым допущение о тенденции относительных частот группироваться вокруг постоянного значения, не может поддерживаться неограниченно долго и с высокой точностью. Поэтому для оценки вероятностей с помощью относительных частот не имеет смысла брать слишком длинные ряды (т. е. слишком большие ) и потому же, кстати, точный переход к пределу (4.5) не может иметь реального смысла.

Во-вторых, в ситуациях, когда мы имеем достаточно большое число возможных элементарных исходов (а они могут образовывать и бесконечное, и даже, как это было уже отмечено в § 4.1, континуальное множество), даже в сколь угодно длинном ряду случайных экспериментов мы будем иметь возможные исходы ни разу не осуществившиеся в ходе нашего эксперимента; да и по остальным возможным исходам полученные с помощью относительных частот приближенные значения вероятностей будут в этих условиях крайне мало надежными.

Апостериорно-модельный подход к заданию вероятностей отвечающему конкретно исследуемому реальному комплексу условий, является в настоящее время, пожалуй, наиболее распространенным и наиболее практически удобным. Логика этого подхода следующая. С одной стороны, в рамках априорного подхода, т. е. в рамках теоретического, умозрительного анализа возможных вариантов специфики гипотетичных реальных комплексов условий разработан и исследован набор модельных вероятностных пространств (биномиальное, пуассоновское, нормальное, показательное и т. п., см. § 6.1). С другой стороны, исследователь располагает результатами ограниченного ряда случайных экспериментов. Далее с помощью специальных математико-статистических приемов (основанных на методах статистического оценивания неизвестных параметров и статистической проверки гипотез, см. гл. 8 и 9) исследователь как бы «прилаживает» гипотетичные модели вероятностных пространств к имеющимся у него результатам наблюдения (отражающим специфику изучаемой реальной действительности) и оставляет для дальнейшего использования лишь ту модель или те модели, которые не противоречат этим результатам и в некотором смысле наилучшим образом им соответствуют.

Опишем теперь основные правила действий с вероятностями событий, являющиеся следствиями принятых выше определений и аксиомы.

Вероятность суммы событий (теорема сложения вероятностей).

Сформулируем и докажем правило вычисления вероятности суммы двух событий .

Для этого разобьем каждое из множеств элементарных событий, составляющих события на две части:

где объединяет все элементарные события со, входящие в но не входящие в состоит из всех тех элементарных событий, которые одновременно входят и в Пользуясь определением (4.3) и определением произведения событий имеем:

В то же время в соответствии с определением суммы событий и с (4.3) имеем

Из (4.6), (4.7) и (4.8) получаем формулу сложения вероятностей (для двух событий):

Формула (4.9) сложения вероятностей может быть обобщена на случай произвольного числа слагаемых (см., например, ):

где «добавки» вычисляются в форме суммы вероятностей вида

причем суммирование в правой части производится, очевидно, при условии, что все различны, a .

В частном случае, когда интересующая нас система состоит лишь из несовместных событии, все произведения вида будут пустыми (или невозможными) событиями и соответственно формула (4.9) дает

Вероятность произведения событий (теорема умножения вероятностей). Условная вероятность.

Рассмотрим ситуации, когда заранее поставленное условие или фиксация некоторого уже осуществившего события исключают из числа возможных часть элементарных событий анализируемого вероятностного пространства. Так, анализируя совокупность из N изделий массового производства, содержащую изделий первого, - второго, - третьего и - четвертого сорта мы рассматриваем вероятностное пространство с элементарными исходами и их вероятностями - соответственно (здесь означает событие, заключающееся в том, что наугад извлеченное из совокупности изделие оказалось сорта). Предположим, условия сортировки изделий таковы, что на каком-то этапе изделия первого сорта отделяются от общей совокупности и все вероятностные выводы в частности, подсчет вероятностей различных событий) нам предстоит строить применительно к урезанной совокупности, состоящей только из изделий второго, третьего и четвертого сорта. В таких случаях принято говорить об условных вероятностях, т. е. о вероятностях, вычисленных при условии уже осуществленного некоторого события. В данном случае таким осуществленным событием является событие , т. е. событие, заключающееся в любое наугад извлеченное изделие является либо второго, либо третьего, либо четвертого сорта. Поэтому, если нас интересует подсчет условной вероятности события А (при условии, что событие В уже имеет место), заключающегося, например, в том, что наугад извлеченное изделие окажется второго или третьего сорта, то, очевидно, эта условная вероятность (обозначим ее ) может быть определена следующим соотношением:

Как легко понять из этого примера, подсчет условных вероятностей - это, по существу, переход в другое, урезанное заданным условием В пространство элементарных событий, когда соотношение вероятностей элементарных событий в урезанном пространстве остается тем же, что и в исходном (более широком), но все они нормируются (делятся на ) для того, чтобы и в новом вероятностном пространстве выполнялось требование нормировки (4.2). Конечно, можно было бы не вводить терминологии с условными вероятностями, а просто использовать аппарат обычных («безусловных») вероятностей в новом пространстве. Запись в терминах вероятностей «старого» пространства бывает полезной в тех случаях, когда по условиям конкретной задачи мы должны все время помнить о существовании исходного, более широкого пространства элементарных событий.

Получим формулу условной вероятности в общем случае. Пусть В - событие (непустое), считающееся уже состоявшимся («условие»), а А - событие, условную вероятность которого Р(А|В) требуется вычислить. Новое (урезанное) пространство элементарных событий состоит только из элементарных событий, входящих в В, и, следовательно, их вероятности (с условием нормировки (4.2)) определяются соотношениями

По определению, вероятность Р(А|В) - это вероятность события А в «урезанном» вероятностном пространстве , и, следовательно, в соответствии с (4.3) и (4.10)

или, что то же,

Эквивалентные формулы (4.11) и (4.11") принято называть соответственно формулой условной вероятности и правилом умножения вероятностей.

Еще раз подчеркнем, что рассмотрение условных вероятностей различных событий при одном и том же условии В равносильно рассмотрению обычных вероятностей в другом (урезайном) пространстве элементарных событий пересчетом соответствующих вероятностей элементарных событий по формуле (4.10). Поэтому все общие теоремы и правила действий с вероятностями остаются в силе и для условных вероятностей, если эти условные вероятности берутся при одном и том же условии.

Независимость событий. Два события А и В называют независимыми, если

Для пояснения естественности такого определения вернемт. е.ся к теореме умножения вероятностей (4.11) и посмотрим, в каких ситуациях из нее следует (4.12). Очевидно, это может быть тогда, когда условная вероятность равна соответствующей безусловной вероятности , т.е., грубо говоря, тогда, когда знание того, что произошло событие никак не влияет на оценку шансов появления события А.

Распространение определения независимости на систему более чем двух событий выглядит следующим образом. События называются взаимно независимыми, если для любых пар, троек, четверок и т.д. событий, отобранных от этого набора событий, справедливы следующие правила умножения:

Очевидно, в первой строке подразумевается

(число сочетаний из k по два) уравнений, во второй - и т. д. Всего, следовательно, (4.13) объединяет условий. В то же время условий первой строки достаточно для обеспечения попарной независимости этих событий. И хотя попарная и взаимная независимость системы событий, строго говоря, не одно и то же, их различие представляет скорее теоретический, чем практический интерес: практически важных примеров попарно независимых событий, не являющихся взаимно независимыми, по-видимому, не существует.

Элемент сигма-алгебры в дальнейшем будем называть случайным событием.

Полная группа событий

Полная группа событий это полная группа подмножеств, каждое из которых является событием. Говорят, что события полной группы это разбиение пространства элементарных исходов.

Конечно-аддитивная функция

Пусть A алгебра. Функция  , отображающая алгебру в множество действительных чисел

называется конечно-аддитивной, если для любого конечного набора попарно несовместных событий

Счетно-аддитивная функция

Пусть F – алгебра или сигма-алгебра. Функция

называется счетно-аддитивной, если она конечно-аддитивна и для любого счетного набора попарно несовместных событий

Мера - это неотрицательная счетно-аддитивная функция, определенная на сигма-алгебре, удовлетворяющая условию

Конечная мера

Мера называется конечной, если

Вероятность

Вероятность (вероятностная мера) P это мера такая, что

С этого момента мы перестанем измерять вероятность в процентах и начнем измерять ее действительными числами от 0 до 1.

называют вероятностью события A

Вероятностное пространство

Вероятностное пространство это совокупность трех объектов – пространства элементарных исходов, сигма-алгебры событий и вероятности.

Это и есть математическая модель случайного явления или объекта.

Парадокс определения вероятностного пространства

Вернемся к исходной постановке задачи теории вероятностей. Нашей целью было построение математической модели случайного явления, которая помогла бы количественно оценить вероятности случайных событий. В то же время для построения вероятностного пространства необходимо задать вероятность, т.е. вроде бы именно то, что мы ищем (?).

Разрешение этого парадокса в том, что для полного определения вероятности как функции на всех элементах F , обычно достаточно задать ее на лишь на некоторых событиях из F , вероятность которых нам легко определить, а затем, пользуясь ее счетной аддитивностью, вычислить на любом элементе F .

Независимые события

Важным понятием теории вероятностей является независимость.

События A и B называются независимыми, если

т.е. вероятность одновременного осуществления этих событий равна произведению их вероятностей.

События в счетном или конечном наборе называются независимыми попарно, если любая пара из них является парой независимых событий

В совокупности

События в счетном или конечном наборе называются независимыми в совокупности, если вероятность одновременного осуществления любого конечного поднабора из них равна произведению вероятностей событий этого поднабора.

Ясно, что независимые в совокупности события независимы и попарно. Обратное неверно.

Условная вероятность

Условной вероятностью события A при условии, что произошло событие B называется величина

Условную вероятность пока определим лишь для событий B, вероятность которых не равна нулю.

Если события A и B независимы, то

Свойства и теоремы

Простейшие свойства вероятности

Следует из того, что А и не-А противоположны и свойства конечной аддитивности вероятности

Вероятность противоположного события

Следует из того, что невозможное и достоверное события противоположны

Вероятность невозможного события

Следует из того, что

Монотонность вероятности

и в этом случае

Следует из того, что любое событие содержится в пространстве элементарных исходов

Ограниченность вероятности

Следует из представления

Вероятность объединения событий

Следует из предыдущего

Полуаддитивность вероятности

Следует из счетной аддитивности вероятности и определения полной группы событий

Вероятности полной группы событий

Сумма вероятностей полной группы событий равна 1.

Следует из счетной аддитивности вероятности, определения полной группы событий и определения условной вероятности

Формула полной вероятности

Если
… - полная группа событий, то для любого события A

Если вероятности всех событий полной группы больше нуля, то также

Следует из предудущей формулы и определения условной вероятности

Формула Байеса

Если
… - полная группа событий ненулевой вероятности, то для любого события A с ненулевой вероятностью

Из повседневного опыта известно, что одни случайные события наступают довольно часто, другие менее часто или совсем редко. Однако эти характеристики событий слишком неопределенны. Более объективной экспериментальной характеристикой случайного события (обозначим его, например, через ) является относительная статистическая частота , равная отношению числа опытов , в которых событие наступило, к общему числу опытов , т. е. . Экспериментально установлено, что для многих событий относительная частота при увеличении становится почти постоянной. Это свойство называют статистической устойчивостью относительных частот . Таким образом, с каждым событием можно связать некоторое число , с которым сближается частота, и считать это число вероятностью события .

Рассмотренные выше и ряд других эмпирических фактов, связанных с поведением относительных частот наступления тех или иных событий в повторных испытаниях, обобщение этих фактов и абстрагирование свойств относительных частот привели к аксиоматическому определению понятия вероятности как меры возможности наступления того или иного наблюдаемого в опыте события.

Пусть – алгебра событий для данного опыта. Вероятностью называется числовая функция, определенная для всех и удовлетворяющая трем условиям (аксиомам вероятностей ):

1) (аксиома неотрицательности );

2) (аксиома нормированности );

3) Если и несовместны (т. е. ), то (аксиома аддитивности ).

Нетрудно убедиться, что относительные частоты удовлетворяют условиям 1) – 3). Действительно,

, .

Если реальные события и несовместны, то они наступили при разных опытах и, следовательно, . Отсюда

,

что соответствует 3).

Для решения задач, связанных с бесконечными последовательностями событий, требуется дополнить приведенные аксиомы следующей аксиомой:

4) Если в последовательности наблюдаемых событий события попарно несовместны (т. е. при ) и , то (расширенная аксиома аддитивности ).

Из аксиом 1) – 3) следует, что ; в частности . Кроме того, если для некоторого опыта , то . Важно отметить, что из равенств или не следует, что событие является достоверным или соответственно невозможным.

Тройку , где – алгебра подмножеств множества элементарных исходов , – числовая функция, удовлетворяющая условиям 1) – 3), называют вероятностным пространством . Построение вероятностного пространства является основным этапом математической формализации того или иного случайного опыта. Наиболее трудной ее частью является задание вероятностного распределения на поле событий для данного опыта, которое в общем случае определяется следующим образом.

Пусть совокупность является разбиением множества . Тогда в силу аксиом 2) и 4) . Это значит, что единичная вероятность достоверного события распределяется по множеству несовместных событий, образующих полную группу. Соответствие между событиями некоторого поля и их вероятностями и называют распределением вероятностей.

Оставаясь в рамках аксиоматической теории, задачу о задании вероятностного распределения на поле событий для данного опыта нельзя решить однозначно. Вопрос о том, какое значение вероятности приписать тем или иным событиям в реальных опытах, решается методами математической статистики .

Знание вероятности наступления интересующего нас события позволяет предсказать с определенной точностью относительную частоту осуществления данного события при проведении достаточно большого числа реальных испытаний, т. е. вероятность выполняет прогностическую функцию. Задачи, которые решаются в теории вероятностей, заключаются в том, чтобы по вероятностям некоторых простых событий, известным из опыта, находить вероятности интересующих нас сложных событий. В других задачах вероятностное пространство строится на основе проведения аналогии между описываемым опытом и какой-либо моделью случайного опыта с известным распределением вероятностей. Ниже рассматриваются несколько важных частных моделей случайных явлений.

Конечное вероятностное пространство. Формула классической вероятности. Пусть – конечное множество элементарных исходов, – набор чисел, удовлетворяющих условиям

.

Вероятностью события назовем число , определенное формулой

,

где событие . Если , то по определению полагаем, что . Числа являются вероятностями элементарных исходов (элементарными вероятностями ). Таким образом, вероятность события равна сумме тех элементарных вероятностей , у которых входят в . Нетрудно убедиться, что определенная таким образом вероятность удовлетворяет всем аксиомам вероятностей.

Определенное выше конечное вероятностное пространство называют также конечной схемой. В конечной схеме вероятность однозначно определяется элементарными вероятностями. Эта схема во многих случаях служит хорошей математической моделью случайных событий.

Рассмотрим частный случай конечной схемы, в котором элементарные вероятности одинаковы, т. е. множество представляет собой конечное множество равновероятных исходов: . Тогда победем иметь

, (1)

где – число элементов множества (число всех благоприятствующих событию исходов), – число элементов множества (число всех элементарных исходов опыта).

Определение (1) называют классическим определением вероятности , а саму формулу (1) – формулой классической вероятности .

Классическое определение вероятности является хорошей моделью тех случайных явлений, для которых элементарные исходы опыта обладают определенной симметрией по отношению к условиям опыта, так что нет оснований считать какой-либо из исходов более вероятным, чем другие. Обычно это предположение оправдано в задачах из области азартных игр, лотерей и т. д. Это объясняется тем, что при изготовлении игральных костей, карт, рулеток и организации лотерей заботятся о соблюдении равновозможности различных исходов. Такие же требования предъявляются к организации выборочного контроля и выборочных статистических исследований.

Пример . Из колоды в 36 карт наудачу вынимается одна карта. Какова вероятность вынуть карту пиковой масти?

◄ Здесь всего исходов . Событие ={вынута карта пиковой масти}. Число равновозможных исходов, благоприятствующих наступлению события , . Следовательно, .

Пример . Бросаются одновременно две симметричные монеты. Какова вероятность выпадения герба на обеих монетах?

◄ Множество состоит из равновозможных элементарных исходов: . Событию ={выпало два герба} благоприятствует исходов. По формуле классической вероятности получаем .

Как строгой математической дисциплины.

Энциклопедичный YouTube

  • 1 / 5

    Вероятностное пространство - это тройка (иногда обрамляемая угловыми скобками : ⟨ , ⟩ {\displaystyle \langle ,\rangle } ), где

    Замечания

    Конечные вероятностные пространства

    Простым и часто используемым примером вероятностного пространства является конечное пространство. Пусть - конечное множество, содержащее | Ω | = n {\displaystyle \vert \Omega \vert =n} элементов.

    В качестве сигма-алгебры удобно взять семейство подмножеств Ω {\displaystyle \Omega } . Его часто символически обозначают 2 Ω {\displaystyle 2^{\Omega }} . Легко показать, что общее число членов этого семейства, то есть число различных случайных событий, как раз равно 2 | Ω | {\displaystyle 2^{\vert \Omega \vert }} , что объясняет обозначение.

    Вероятность, вообще говоря, можно определять произвольно; однако, в дискретных моделях зачастую нет причин считать, что один элементарный исход чем-либо предпочтительнее другого. В таком случае, естественным способом ввести вероятность является:

    P (A) = n A n {\displaystyle \mathbb {P} (A)={\frac {n_{A}}{n}}} ,

    где A ⊂ Ω {\displaystyle A\subset \Omega } , и | A | = n A {\displaystyle \vert A\vert =n_{A}} - число элементарных исходов, принадлежащих A {\displaystyle A} . В частности, вероятность любого элементарного события:

    P ({ ω }) = 1 n , ∀ ω ∈ Ω . {\displaystyle \mathbb {P} (\{\omega \})={\frac {1}{n}},\;\forall \omega \in \Omega .}

    Пример

    Рассмотрим эксперимент с бросанием уравновешенной монеты. Естественным будет взять два события: выпадение герба ( Γ {\displaystyle \Gamma } ) и выпадение решки ( P {\displaystyle \mathrm {P} } ), то есть Ω = { Γ , P } . {\displaystyle \Omega =\{\Gamma ,\mathrm {P} \}.} Тогда A = { { Γ } , { P } , { Γ , P } , ∅ } , {\displaystyle {\mathfrak {A}}=\{\{\Gamma \},\{\mathrm {P} \},\{\Gamma ,\mathrm {P} \},\varnothing \},} и вероятность можно посчитать следующим образом:

    P ({ Γ }) = 1 2 , P ({ P }) = 1 2 , P ({ Γ , P }) = 1 , P (∅) = 0. {\displaystyle \mathbb {P} (\{\Gamma \})={\frac {1}{2}},\;\mathbb {P} (\{\mathrm {P} \})={\frac {1}{2}},\;\mathbb {P} (\{\Gamma ,\mathrm {P} \})=1,\;\mathbb {P} (\varnothing)=0.}

    Таким образом определена тройка (Ω , A , P) {\displaystyle (\Omega ,{\mathfrak {A}},\mathbb {P})} - вероятностное пространство, в рамках которого можно рассматривать различные задачи.

    События образуют полную группу , если хотя бы одно из них обязательно произойдет в результате эксперимента и попарно несовместны.

    Предположим, что событие A может наступить только вместе с одним из нескольких попарно несовместных событий , образующих полную группу. Будем называть события (i = 1, 2,…, n ) гипотезами доопыта (априори). Вероятность появления события А определяется по формуле полной вероятности :

    Пример 16. Имеются три урны. В первой урне находятся 5 белых и 3 черных шара, во второй – 4 белых и 4 черных шара, а в третьей – 8 белых шаров. Наугад выбирается одна из урн (это может означать, например, что осуществляется выбор из вспомогательной урны, где находятся три шара с номерами 1, 2 и 3). Из этой урны наудачу извлекается шар. Какова вероятность того, что он окажется черным?

    Решение. Событие A – извлечен черный шар. Если было бы известно, из какой урны извлекается шар, то искомую вероятность можно было бы вычислить по классическому определению вероятности. Введем предположения (гипотезы) относительно того, какая урна выбрана для извлечения шара.

    Шар может быть извлечен или из первой урны (гипотеза ), или из второй (гипотеза ), или из третьей (гипотеза ). Так как имеются одинаковые шансы выбрать любую из урн, то .

    Отсюда следует, что

    Пример 17. Электролампы изготавливаются на трех заводах. Первый завод производит 30 % общего количества электроламп, второй – 25 %,
    а третий – остальную часть. Продукция первого завода содержит 1% бракованных электроламп, второго – 1,5 %, третьего – 2 %. В магазин поступает продукция всех трех заводов. Какова вероятность того, что купленная в магазине лампа оказалась бракованной?

    Решение. Предположения необходимо ввести относительно того, на каком заводе была изготовлена электролампа. Зная это, мы сможем найти вероятность того, что она бракованная. Введем обозначения для событий: A – купленная электролампа оказалась бракованной, – лампа изготовлена первым заводом, – лампа изготовлена вторым заводом,
    – лампа изготовлена третьим заводом.

    Искомую вероятность находим по формуле полной вероятности:

    Формула Байеса.

    Пусть – полная группа попарно несовместных событий (гипотезы). А случайное событие. Тогда,

    Последнюю формулу, позволяющей переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А, называют формулой Байеса .



    Пример 18. В специализированную больницу поступают в среднем 50 % больных с заболеванием К , 30 % – c заболеванием L , 20 % –
    с заболеванием M . Вероятность полного излечения болезни K равна 0,7 для болезней L и M эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найдите вероятность того, что этот больной страдал заболеванием K .

    Решение. Введем гипотезы: – больной страдал заболеванием К L , – больной страдал заболеванием M .

    Тогда по условию задачи имеем . Введем событие А – больной, поступивший в больницу, был выписан здоровым. По условию

    По формуле полной вероятности получаем:

    По формуле Байеса .


Close