Революционное развитие технологий в области наружного освещения позволяет существенно сократить энергопотребление за счет рационального управления, применения инновационных, перспективных энергосберегающих технологии с применением различных типов светильников.

В последние десятилетия проблема энергосбережения в области освещения становится все более актуальной из-за роста вероятности дефицита энергии. Общая доля мирового производства электроэнергии, затрачиваемая на освещение, доходит, по разным источникам до 20—30%, и значительная ее часть приходится на наружное освещение (НО).

В проекте Федерального закона «Об энергосбережении и повышении энергетической эффективности» закладываются основы государственной политики в этой области, при этом большое внимание уделено разработке программ повышения энергетической эффективности в основных отраслях и определение потенциала энергосбережения.

Ведущие компании в области освещения проводят исследования и разработки с целью создания технологий управления энергосбережением в области НО. Реализация таких технологий обеспечивается благодаря применению современных автоматизированных систем управления.

В настоящее время, несмотря на значительный прогресс в области создания энергосберегающих источников света, создалась достаточно стабильная ситуация по использованию современных ламп для наружного освещения. Основные типы источников света, применяемые в этой области, представлены в таблице 1.

Не вдаваясь в подробности сравнения различных типов источников света, необходимо отметить, что революционные сдвиги во внутреннем освещении зданий в настоящее время существенно опережают аналогичные процессы в области наружного освещения. Наиболее распространенным источником света во внутреннем освещении, как для промышленных, так и для бытовых целей, являются газоразрядные люминесцентные лампы низкого давления подключаемые, как правило, через электронный пускорегулирующий аппарат (ЭПРА). Широко распространено управление световыми сценариями, обеспечивающее, в том числе и энергосбережение. Для этого применяются различные проводные (DALI, DSI, 1-10V) и беспроводные интерфейсы.

В наружном освещении применяются натриевые лампы высокого давления (НЛВД), а также, в отдельных случаях, более дорогие металло-галогенные лампы (МГЛ), обладающие спектром, более близким к спектру излучения Солнца. Оба типа ламп, оснащаются электромагнитной, либо электронной пускорегулирующей аппаратурой.

В отдельных случаях находят применение светодиодные светильники, однако, как следует из таблицы, от них в настоящее время не следует ожидать существенной экономии электроэнергии.

Предпосылки внедрения технологий управления энергосбережением.

Внедрение энергосберегающих технологий с каждым годом становится все актуальнее. Известны несколько программ, реализованных в Европе и в Северной Америке и направленных как на увеличение экономичности собственно светильников, так и на обеспечение энергосберегающих способов управления.

Рассмотрим возможности управления энергосбережением в наружном освещении. Типовая для России и для ряда других стран схема установка наружного освещения включает в себя трансформаторную подстанцию, преобразующую трехфазное напряжение 6/10 кВ в трехфазное напряжение 220/380 В, пункт включения освещения (ПВ), осуществляющий управление, контроль и энергоучет в сетях освещения и собственно линии НО. В линиях освещения устанавливаются светильники с лампами высокого давления (как правило, НЛВД и МГЛ). Лампы, подключаются по схеме «звезда», т.е. между одним из фазных и нулевым проводом сети. В «обычном» исполнении для обеспечения нормального режима работы НЛВД (МГЛ) в светильник устанавливается электромагнитный пускорегулирующий аппарат (ЭмПРА). ЭмПРА содержит импульсное зажигающее устройство, обеспечивающее начальный поджиг заряда в лампе, балластный дроссель, согласующий нелинейное сопротивление лампы с сетью 220 В и конденсатор, обеспечивающий приемлемый коэффициент мощности.

Возможности экономии электроэнергии в типовых установках НО минимальны. Традиционный до недавнего времени способ экономии энергопотребления при управлении такими установками, заключался в отключении 1/3 или 2/3 светильников в ночное время (на 4—5 часов), когда снижается активность городского населения и интенсивность дорожного движения. Такое пофазное отключение обеспечивает суммарную экономию электроэнергии до 30% и симметричность загрузки трехфазных линий сетей НО при подключении к одному пункту включения нескольких линий наружного освещения. Однако в настоящее время этот способ не признается целесообразным и не рекомендуется для использования международным комитетом по освещению (МКО), в основном, ввиду негативного влияния на безопасность дорожного движения. В Москве и Санкт-Петербурге уже несколько лет такой ночной режим освещения не используется.

Анализ вариантов энергосбережения

Анализ традиционной схемы НО показывает, что возможными резервами по управлению энергосбережением могут быть:

1. стабилизация напряжения;

2. увеличение КПД ПРА;

3. диммирование.

В первом случае экономия достигается стабилизацией режима работы каждой лампы групповым или индивидуальным способом, компенсируя нестабильность напряжения в сети, которая может доходить до ±15%.

Во втором случае достигнуть экономии возможно за счет использования более эффективных балластов, необходимых для питания НЛВД и МГЛ, а именно ЭПРА. Кроме того, более эффективное использование ламп высокого давления может достигаться за счет повышенной отдачи ламп при питании их от ЭПРА за счет отсутствия эффекта так называемого «перезажигания» в каждый полупериод питающего напряжения.

В третьем случае энергосбережение достигается за счет регулировки режима работы ламп (диммирования) в так называемом «ночном» режиме работы. При этом, целесообразным считается обеспечение глубины регулирования светового потока ламп до 50%, что может обеспечить экономию потребляемой мощности по сравнению с полным режимом освещения до 45% . Общее уменьшение энергопотребления за счет того, что ночной режим составляет около половины от всего времени работы ламп, может достигать 25%. МКО признает предпочтительным такой способ регулирования при снижении интенсивности дорожного движения в ночное время.

Суммарный резерв по снижению энергопотребления в сетях НО, таким образом, приближается к 50%.

Рассмотрим несколько методов управления линиями НО с точки зрения энергосбережения.

1. Традиционная схема трехфазной установки НО с обычными светильниками с ЭмПРА и возможностью уменьшения освещенности за счет отключения в ночное время 1/3 или 2/3 светильников, что не признается целесообразным и поэтому в нашем анализе не рассматривается.

2. Схема с двойным количеством светильников (по два на опору), половина из которых в ночном режиме отключается. Схема довольно проста, однако требует больших затрат при монтаже, а также в эксплуатации.

3. Схема со светильниками с двухрежимными ЭмПРА, обеспечивающая уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 30% за счет подключения в каждом светильнике в ночном режиме дополнительного балластного дросселя. Исторически это были первые на Европейском рынке энергоэкономичные устройства, обеспечивающие снижение энергопотребления без частичного отключения светильников. Необходимо учитывать, что такая схема существенно снижает надежность ЭмПРА и требует использования дополнительного компенсирующего конденсатора, а также линии управления.

4. Схема с симисторными регуляторами, обеспечивающими фазовое регулирование напряжения линии освещения с изменением формы питающего напряжения. Она обеспечивает уменьшение освещенности в ночном режиме до 50% с экономией суммарного энергопотребления до 35%. При простоте реализации такая схема требует использования дополнительного общего регулируемого компенсатора коэффициента мощности и не нашла широкого применения в НО.

5. Схема со светильниками с ЭПРА, обеспечивающая уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 40%. Такая концепция впервые позволяла использовать все известные возможности по экономии энергопотребления. Однако, решая проблему управления светильниками, эта схема снижает их надежность и существенно увеличивает их стоимость.

6. Схема с регулятором напряжения в шкафу пункта включения НО, построенная на многообмоточном автотрансформаторе с переключаемыми с помощью симисторов обмотками. Она обеспечивает уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 35%. Схема нашла довольно широкое распространение в Европе, но требует использование дополнительного силового шкафа.

7. Схема с конверторами (или так называемыми «электронными трансформаторами») в шкафу пункта включения НО, обеспечивающая уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 35%. Реализации такой схемы нам не известны; вероятно, это связано с тем, что весьма затруднительно получить в ней требуемую надежность.

8. Перспективная схема установки НО со светильниками с ЭПРА на линиях постоянного напряжения, обеспечивающая уменьшение освещенности в ночном режиме до 50% с экономией энергопотребления до 45%. Являясь модернизацией схемы по п. 5, эта схема имеет повышенную, по сравнению с ней, надежность и меньшую материалоемкость.

9. Установка НО со светодиодными светильниками.

По вариантам 3, 5, 8 и 9, в которых используются регулируемые (диммируемые) светильники, возможны следующие подварианты, связанные с различными способами управления светильниками

а) Управление светильниками по дополнительной командной линии с общепринятыми во внутреннем освещении интерфейсами DALI, DSI, 1-10V или другими проводными интерфейсами.

б) Управление светильниками путем коммутации напряжения (тока) в линии НО.

в) Управление светильниками с помощью PLC или FM-модема.

г) Автономное управление светильниками встроенными таймерами.

Все варианты от 3-го по 9-й представляют собой дополнительный уровень автоматизированной системы управления наружным освещением (АСУНО), а именно групповое и индивидуальное управление регуляторами и светильниками.

Было рассмотрено 20 вариантов и подвариантов управления энергосбережением в линиях НО. Многие из этих вариантов уже реализованы, другие вполне могут быть реализованы, а некоторые, скорее всего, не будут реализованы никогда.

Для обеспечения объективности оценки вариантов нам необходимо учесть все факторы, влияющие на экономическую эффективность внедрения каждой конкретной инновации.

Как уже отмечалось, аналогичная революция в области внутреннего освещения, продолжается уже более 20 лет. На начальной стадии этой революции самые примечательные сдвиги произошли в части широкого применения энергосберегающих светильников с ЛЛ и встроенными ЭПРА, дальнейший прогресс многие исследователи связывают с применением сверхярких светодиодов.

Оценка экономической эффективности

При исследовании возможных вариантов управления была разработана методика оценки эффективности внедрения энергосберегающей технологии в НО.

При проведении оценки эффективности учитывалась разница в показателях между конкретным вариантом и типовым вариантом линии НО. В расчете учитывалось:

Энергопотребление линии НО;

Стоимость силовых и управляющих кабелей;

Стоимость светильников;

Затраты на монтаж линии НО;

Затраты на ремонт и обслуживание линии НО;

Стоимость дополнительного оборудования и материалов.

В оценке были учтены прогнозы по росту тарифов на электроэнергию по РФ на весь расчетный период.

Объектом анализа в проводимом исследовании выступает типовой участок скоростной автодороги, за который принят магистральный отрезок трассы длиной 2 км по 4 полосы в двух направлениях, имеющий 328 светильников, 8,2 км линий освещения и обслуживаемый одной трансформаторной подстанцией и 2-мя шкафами управления НО.

Сравнение вариантов проведено по сроку окупаемости (СО). За период расчета принят промежуток в 6 лет.

Результаты оценки представлены в таблице 3.

Таблица 3. Результаты оценки вариантов энергосберегающих технологий

Варианты технологий

Срок окупаемости, лет

% экономии

Типовая система

Двойное число светильников

2-режимные ЭмПРА

2-режимные ЭмПРА

2-режимные ЭмПРА

2-режимные ЭмПРА

Фазорегурятор

Система с ЭПРА

Система с ЭПРА

Система с ЭПРА

Система с ЭПРА

Переключаемый автотрансформатор

Конвертор

Система с ЭПРА на линиях с постоянным напряжением

Система с ЭПРА на линиях с постоянным напряжением

Система с ЭПРА на линиях с постоянным напряжением

Светодиоды

Светодиоды

Светодиоды

Светодиоды

Лучшие сроки окупаемости вариантов 8б и 8в объясняются реализацией максимальной экономии электроэнергии при более высокой надежности ЭПРА в сравнении с другими вариантами.

Очевидно, что варианты 4 и 6 из-за меньшей экономии электроэнергии существенно проигрывают варианту 8 в далекой перспективе. Что касается варианта 5, то его недостаточно высокие показатели могут быть объяснены относительно большей ценой ЭПРА и сравнительно меньшей их надежностью. При отладке серийного изготовления высоконадежных ЭПРА при всех других равных условиях этот вариант, вероятно, сможет по эффективности конкурировать с вариантом 8. Система наружного освещения со светодиодными светильниками (вариант 9) имеет большие начальные затраты (высокая цена светильников) и меньшую экономию электроэнергии в сравнении с другими вариантами, СО такой системы превышает 6 лет. Очевидно, что при таких показателях наибольшее применение в НО светодиодные светильники найдут не в утилитарном освещении, а в архитектурно-художественной подсветке.

Особо следует отметить, что расчеты проводились для нового строительства линий НО, либо их капитальной реконструкции. Внедрение технологий энергосбережения на действующих линиях НО без капитальной реконструкции линий потребует уточняющих расчетов, при этом оценки отдельных вариантов могут претерпеть изменения. Впрочем, такие расчеты необходимы для любого конкретного проекта.


Таким образом в области наружного освещения в настоящее время происходит революционное развитие технологий, связанное с расширением возможностей по экономии энергопотребления за счет рационального управления.

На конкретном примере разработки в области управления энергосбережением впервые проведена технико-экономическая оценка эффекта внедрения различных типов технологий на самом раннем этапе проектирования системы.

Анализ и предварительный расчет экономической эффективности вариантов внедрения энергосберегающих технологий показывает наибольшую перспективность систем освещения с ЭПРА на линиях с постоянным и переменным напряжением, обеспечивающих быструю окупаемость и экономию электроэнергии до 40—45%.

14.07.15

Современный рынок светотехники меняется вслед за возрастающими потребностями клиентов. Технологии, еще 3 года назад доступные только в hi-end сегменте, приходят на массовый рынок. Специалисты компании Тринова исследовали новинки 2015 года ведущих мировых производителей светотехники с целью выяснить, какие из трендов доминируют на рынке сейчас.

Ультратонкие светодиодные светильники

Один из главных трендов 2015 года продиктован стремлением производителей светотехники делать свои изделия тоньше, легче, элегантнее, а также экономить собственные ресурсы, снижая конечную стоимость изделия для потребителя. Европейская тенденция к экономии в сочетании передовыми достижениями в области дизайна и технологий рождает восхитительные решения.

Тонкий корпус потребовал целого ряда серьезных конструктивных изменений. В отличие от классических подвесных светильников, у сверхтонких подвесных светильников источник света расположен в боковых рамках корпуса, как это реализовано, например, в экранах современных смартфонов. Такое расположение источника света потребовало изменить способ доставки света, благодаря чему появились микропризматические светорассеиватели особой конструкции, прозрачные на вид, они обеспечивают достаточный световой поток благодаря прямому и отраженному свету.

  • Ультратонкий профиль;
  • Красивый внешний вид;
  • Экономичный и долговечный светодиодный источник света;
  • Простота монтажа;

TRILUX LATERALO PLUS - толщина профиля 14 мм.


TRILUX LATERALO RING - 15 мм.

RZB SIDELITE ECO - 12 мм.

Regent Dime LED - 25 мм.

Модульные светильники: новые возможности для светодизайна

Современные светильники модульной конструкции становятся все более разнообразными и функциональными. Главная идея, которая легла в основу модульных светильников — обеспечение свободной подстройки освещения под нужды и функции конкретного пространства. Подобные решения особенно актуальны для open space офисов и пространств, которые могут менять свое функциональное назначение.

ARTEMIDE GRAFA

Комбинируя модули разных размеров (в данном случае это модули 600х600 и 600х1200 мм) можно создавать особую конфигурацию системы освещения, повышая освещенность, изменять внутренний облик помещения. Отличная опция для продуманного дизайна освещения.

Принцип модульности лег также в основу многих современных уличных светильников. В этом случае один и тот же модуль - светодиод + оптика, встраивается в разные корпуса, что позволяет снизить цену приборов, сохраняя привлекательный дизайн и меняя функциональное назначение осветительного прибора. Например, светильник HESS с модулем LEVO может быть использован как для освещения автомагистралей, так и для освещения парковых зон - модуль просто вставляется в другой корпус на соответствующей опоре.

Преимущества для конечного потребителя:

  • Легкая система монтажа - нет пыльных и грязных работ, не нужно сверлить, монтировать, грунтовать и красить;
  • Нет необходимости останавливать функционирование объекта для изменения конфигурации системы освещения;
  • Затраты на обслуживание и монтаж минимальны;
  • Возможность создать уникальный дизайн освещения.

Дизайнерский свет становится доступнее

Современные светильники перестали быть лишь утилитарным прибором, обеспечивающим достаточный уровень освещенности в помещении. Светильники сейчас — неотъемлемая часть красивого и продуманного интерьера. Производители светотехники все чаще прибегают к использованию натуральных материалов при изготовлении осветительных приборов, дизайнеры фабрик стараются совместить эргономику, функциональность и превосходный внешний вид в одном устройстве.

Инженерам и дизайнерам немецкой фабрики RZB это удалось в полной мере. Этот светодиодный светильник получил массу восторженных отзывов от критиков и потребителей, а также стал победителем престижной международной премии в области дизайна REDDOT 2015 за лучший промышленный дизайн. Ультратонкий светодиодный подвесной светильник из муранского стекла ручной работы RZB SIDELITE ROUND является одновременно шедевром дизайнерской и инженерной мысли, а его стоимость не превышает стоимость обычных европейских светильников такого класса, но лишенных какой-либо изюминки в дизайне.

Преимущества для потребителей:

  • Экологичность изделий;
  • Светильники гармонично сочетаются с натуральными отделочными материалами;
  • Повышают класс помещения;
  • Остаются доступными.

Высокотехнологичная оптика активнее проникает в светотехнику


Кроме того, новые технологии обработки светорассеивателей позволяют повысить эффективность и светильников для внутреннего освещения. Немецкая компания Trilux преуспела в этом направлении, выпустив оригинальный светильник Lateralo Plus с микропризматическим рассеивателем BLGS - бинарной светорассеивающей системой, которая позволяет эффективно сочетать прямой и отраженный световой поток, не допуская бликов и теней на рабочих поверхностях, равномерно заливая светом все пространство.

Преимущества для потребителя:

  • Высокая эффективность;
  • Возможность получить четко направленный световой поток;
  • Возможность создать продуманный дизайн освещения;

Светодиоды развиваются экспоненциально

Современные светодиодные источники света становятся эффективнее, меньше, ярче и доступнее. Фабрики признаются, что производство не всегда успевает реагировать на обновления источников света, поколения которых иногда меняются по 2 раза в год. В скором времени на рынке появятся светодиоды, готовые прослужить более 100 000 часов, это значительно повысит окупаемость проектов на светодиодов и мы в праве ожидать их массовый приход в retail. Кроме того, светодиодные источники света становятся меньше, что позволит делать корпуса светильников еще тоньше и легче, не жертвуя при этом мощностью светового потока.

Какие новые тенденции светотехники ждут нас в будущем? Предлагайте свои варианты в комментариях!

На сегодняшний день от 15% до 20% электроэнергии, используемой в домах, приходится на освещение. Если подсчитать расходы на нее за год, вызывает удивление тот факт, почему так мало людей перешли на использование экономных ламп. Некоторые, возможно, ошибочно полагают, что у освещения с низким энергопотреблением отсутствуют все те преимущества, которые делают традиционные лампы такими популярными. Тем не менее, в то время как использование старых и неэффективных ламп будет постепенно сокращаться, в центре внимания заслуженно окажутся лампы с высокой яркостью на основе светодиодов (LED).

Как и большинство качественных электротоваров, светодиоды будут работать без сбоев как при длительном использовании, так и при регулярном включении и выключении. Производители светодиодных ламп достигли такого уровня надежности благодаря эффективной системе управления терморегулированием, разработанной для предотвращения перегрева светодиодов.

Качественные светодиодные лампы могут работать до 40 тыс. часов, что, по крайней мере, в два раза (а то и более) превышает срок жизни обычной компактной флуоресцентной лампы, а часто – даже в три или четыре раза. Для светодиодных ламп, обычно используемых в темное время суток в течение нескольких часов, это означает, что, будучи вкрученной в тот день, когда в семье родился ребенок, она прослужит до того момента, пока он не покинет родительский дом и не создаст собственную семью.

Как устроен этот мир…

Если разобрать светодиодную ламу, можно найти множество крошечных чипов, которые загораются, когда через них проходит электричество.

Схема светодиодной лампы

Этот массив элементов и является ответом, почему светодиодное освещение такое привлекательное. Некоторые светодиоды лампы излучают белый свет таким же образом, как и люминесцентные лампы: компоненты производят синий свет, но фосфорное покрытие на поверхности светодиода преобразует его в видимый белый свет. Способность светодиодных ламп легко воспроизводить различные оттенки света является ключевым, но не единственным их преимуществом по сравнению с компактными люминесцентными лампами.



Компактная люминесцентная лампа (CFL) Verbatim LED
Мощность 8 Вт 7,7 Вт
Сила светового потока 400 лм 500 лм
Светоотдача 50 лм/Вт 65 лм/Вт
Энергоэффективность 80% 82%
Регулирование яркости (диммирование) Избирательно Да
Вредные или опасные материалы Да, ртуть Нет
Срок эксплуатации 6 тыс. - 15 тыс. часов Ок. 40 тыс. часов
Работа на полную мощность Отложенная Мгновенная
Стоимость электроэнергии за год* 5 евро 4,7 евро
*Стоимость используемой электроэнергии рассчитана, исходя из ежедневного освещения 10 часов в день 365 дней в году при среднем тарифе на электроэнергию в Европе 0,17 евро за кВт*ч

Таблица 1: Сравнение ламп

LED против люминесцентных ламп

С люминесцентными лампами потребителю всегда надо идти на компромисс. Например, прежде чем CFL достигнет полной яркости, пройдет несколько минут. Кроме того, уже при полной яркости свет флуоресцентных ламп кажется не таким привлекательным, как обычное освещение, к которому мы привыкли. Также вызывает беспокойство тот факт, как быстро CFL будут «выгорать» и как их ультрафиолетовое излучение может негативно повлиять на произведения искусства, ткани и отделку мебели с течением времени.

Компактные люминесцентные лампы технологически идентичны люминесцентным лампам, используемым в складских помещениях и в офисах – в среде, где главным критерием освещения становится функциональность и эффективность, а не эстетические соображения. В конце концов, не всякий решится установить у себя в гостиной люминесцентные лампы промышленного назначения. По сравнению с ними светодиодные лампы излучают привлекательные тона белого света.

Еще один недостаток компактных люминесцентных ламп – это то, что для преобразования электричества в свет в них используется токсичная элементарная ртуть. Наличие высокотоксичной ртути означает, что их нельзя просто выбросить в мусорный бак, так как, разбившись, они будут выделять токсичные пары. Компактные люминесцентные лампы необходимо утилизировать особым образом, сдавая их в специализированные пункты приема.

Лампы на основе светодиодов не содержат никаких опасных веществ, и поэтому по окончанию срока эксплуатации их легко утилизировать, таким образом, уменьшив количество твердых бытовых отходов.

В настоящее время светодиодные технологии составляют конкуренцию экологичным галогенным, или IRC-галогенным, лампам, которые на 30% сокращают затраты по сравнению с обычными галогенными лампами. Галогенная лампа, как и «лампочка Ильича», излучает свет при нагревании электрическим током вольфрамовой нити. Для повышения эффективности новые галогенные эколампы используют специальное покрытие, которое пропускает видимый свет, но задерживает инфракрасное излучение и отражает его назад, к спирали. Однако новые галогенные лампы по-прежнему гораздо менее эффективны и долговечны, чем компактные люминесцентные и светодиодные лампы. Светодиодные лампы, по крайней мере, в три раза более эффективны, чем галогенные эколампы, и в силу своих надежных твердотельных технологий, как правило, светят в 15 раз дольше.

Тип лампы Преимущества Недостатки
  • Мгновенное достижение максимальной яркости
  • Не содержит ртути и др. вредных материалов
  • Свет высокого качества
  • Регулируемая яркость
  • Более высокий уровень энергоэффективности
  • Высокий уровень яркости
  • Совместимость со схемами затемнения
  • Срок службы - 20-35 лет
  • Долгий срок эксплуатации в режиме вкл./выкл.
  • Более высокие начальные издержки по сравнению с компактными люминесцентными лампами
  • Более низкие начальные издержки по сравнению со светодиодными лампами
  • Достижение максимального уровня яркости с задержкой
  • Содержит канцерогенную ртуть
  • Яркость не регулируется
  • Свет низкого качества
  • Излучает ультрафиолетовый свет
  • Срок службы до 13 лет
  • Требует специальной утилизации

Таблица 2: Преимущества и недостатки LED и CFL

Таким образом, светодиодные лампы являются очень привлекательным вариантом для домашнего освещения. Светодиоды являются более экологичными и энергоэффективными, чем альтернативные технологии освещения. Хотя изначально их стоимость может превышать стоимость компактных люминесцентных ламп и экологичных галогенных ламп, но в долгосрочной перспективе светодиодное освещение сэкономит вам средства, поскольку срок службы светодиодных ламп намного дольше, чем у любой другой технологии освещения, и они оправдают себя много раз, прежде чем потребуют замены.

Новинки светотехники от Verbatim

Не так давно компания Verbatim представила новинки светодиодного освещения, сделав основной акцент на расширении уже существующих линеек светодиодной продукции как в сегменте профессионального, так и бытового использования.

Новое поколение ламп конечного потребителя Verbatim Classic A имеет традиционный цоколь E27 и самую подходящую для домашнего освещения цветовую температуру 2700K и 3000K. Опции мощности: 4 Вт, 8 Вт, 10 Вт, 12 Вт и 13 Вт. Яркость: 250-1100 лм. Все новые модели диммируемые, что можно использовать для создания более уютной обстановки в доме и одновременно снизить потребление электроэнергии.


Такие лампы являются выгодной альтернативой классическим лампам накаливания и создают комфортную атмосферу в доме, а также в гостиницах или ресторанах.

Среди других новинок – лампы Verbatim LED PAR16 Diamond с элегантным дизайном, которые являются идеальной заменой для стандартных высоковольтных галогенных ламп для акцентированной точечной подсветки и верхнего света. Разработанные на основе бескорпусного чипа и оптики с алмазной обработкой, лампы Verbatim LED PAR16 мощностью 7,3 Вт с цоколем GU10 представлены в трех опциях цветовой температуры: 2700K, 3000K и 4000K. Однофокусная оптика придает свету этих ламп мягкость и восприятие, как при галогенном освещении, при этом луч прекрасно отрегулирован, а блики сведены к минимуму. Их галогеновый эквивалент достигает 66 Вт, потребление энергии не превышает 87% в сравнении с обычной галогенной лампой мощностью 60 Вт. Технология светодиодов с бескорпусным чипом улучшает термосопротивление и обеспечивает лучшее качество и эффективность освещения.

Все модели LED PAR16 Diamond диммируемые и отличаются высокоэнергетической продуктивностью. Они оснащены встроенной системой регулирования температуры, гарантирующей длительный срок эксплуатации при отличном соотношении цена-качество в своей категории. Срок службы достигает 35 000 часов (в 15 раз больше, чем у обычной галогенной лампы), что уменьшает расходы на ремонт и техобслуживание. Основные сферы их применения - подсветка витрин и прилавков, а также подсветка различных объектов в магазинах, музеях и ресторанах.

Энергосберегающие устройства незаменимы в наш век, век прогрессивных технологий и повышенного энергопотребления. Повышенный спрос на светодиодные устройства способствует уменьшению цены, и они становятся доступными для простого обывателя.

Учитывая постоянное понижение цены, замена обычных лампочек на светодиодные сегодня стала выгодной. Раньше их использовали только для подсветки, а сегодня более 50 процентов рынка светодиодов приходится на освещение. Кроме этого, ученые не стоят на месте и постоянно развивают новые решения. Сегодня важными аспектами в разработках являются интеллектуальность, мощность и минимальное энергопотребление решений.

Светодиодные лампы LED SlimStyle

Их производством занимаются такие известные компании, как NliteN и Philips. Это тонкие и легкие лампы. Основным достоинством является то, что лампа имеет теплоотвод. На нем располагаются 26 светодиодов. Срок эксплуатации LED SlimStyle – 3 года, а заявленная стоимость – всего около 10 долларов. По мнению производителей, такую лампу можно использовать при освещении квартиры или дома.

LED-лампы с настройкой цвета

Компания Philips представила на рынке LED-лампы, которые способны излучать любой цвет в радиусе своего действия. Комплект состоит из ламп (3 штуки) и концентратора. Кроме этого, устройство интеллектуально. Пользователь может управлять им с мобильного телефона, где можно запрограммировать график работы освещения, установить режимы и цвета излучения.

Светодиоды-GaN на кремниевых подложках

Инновационная разработка – технология GaN. Особенностью этого решения является использование кремниевых подложек, которые пришли на смену сапфировым. Первые не прижились в устройстве из-за высокой цены, кремниевые подложки значительно дешевле (на 30%). Устройства, произведенные по технологии GaN, имеют высокую яркость свечения и минимальное потребление электроэнергии. Сегодня разработкой GaN занимаются ARC Energy, Toshiba и другие компании.

GaN-светодиоды на GaN-подложках

Еще одним направлением технологии GaN является разработка GaN-светодиодов. Она выгодно отличается от своей предшественницы качеством цветопередачи и интенсивностью излучения. Данной разработкой занимается компания Soraa. Специалисты считают, что использование идентичной подложки (не кремниевой или сапфировой) значительно упрощает процесс производства и снижает стоимость продукции.

Светильники Human Centric Lighting (HCL)

Особым направлением является адаптация освещения к особенностям человеческого организма. Сегодня уже есть светильники, в которых интенсивность светового потока зависит от биоритмов человека. Производители считают, что такие лампы способны повысить настроение, нормализовать сон и увеличить работоспособность.

Светодиодные осветительные приборы становятся все более популярны. Их применяют для освещения дома и сада. Они постепенно вытесняют с рынка менее эффективные источники освещения. Можно ли освещать свой дом с помощью светодиодов?

Что следует в общем знать о светодиоде? Это электрический осветительный прибор, состоящий из особых кристаллических полупроводников и оптической системы. В один корпус могут быть смонтированы сразу много полупроводниковых кристаллов, которые и определяют насыщенность и яркость светового потока. По сравнению с привычными нам лампами накаливания, светодиод обладает целым рядом неоспоримых преимуществ. Он, во-первых, не нагревается, т.е. электрическая энергия практически полностью преобразуется в световую. Во-вторых, отсутствие нагрева сопровождается значительной прочностью и особо длительным периодом эксплуатации. В-третьих, светодиод абсолютно безопасен для окружающей среды, т.к. не содержит опасных веществ для человека и окружающей природной среды. Его средний срок службы может достигать ста тысяч часов, что составит около 10 лет непрерывной эксплуатации. Именно это и является главным аргументом в его пользу. Если же сказать проще, то светодиод меньше потребляет энергии и не нагревается, экологически безопасен и служит фантастически долго.

Излучаемый светодиодной лампой яркий и чистый свет украсит любой интерьер. Отдельно следует упомянуть такое свойство светодиодного освещения, как возможность настройки того или иного цвета или оттенка под ваше желание или предпочтение. Это ценное свойство освещения светодиодами успешно используется на практике инженерами и дизайнерами. Специальный контроллер позволит регулировать насыщенность и яркость освещения, что порой бывает необходимо в местах общественного назначения.

Все чаще светодиоды начинают использоваться и в уличных системах освещения. Здесь www.dominio.com.ua вы увидите яркие примеры освещения улиц, дорог, парков светодиодными лампами. Использование этого типа освещения позволяет значительно снизить нагрузку на электрические сети. Создаваемый светодиодной лампой световой поток весьма стабилен и обладает максимальным углом рассеивания. Важно и то, что такие осветительные приборы можно выпускать в абсолютно любых модификациях и конфигурациях, что позволяет им стать самым оптимальным средством при реализации каких угодно идей в области дизайна. Полет фантазии дизайнера в области освещения теперь практически ничем не ограничен. Используемые в уличном освещении светодиодные светильники крайне устойчивы к неблагоприятным атмосферным явлениям, в т. ч. практически не подвержены влиянию высоких и низких температур. Их рабочий диапазон от плюс 50 до минус 50 градусов по Цельсию. Такая живучесть позволяет использовать их в саунах, банях и бассейнах.


Close