Обладают основным свойством дроби :

Замечание 1

Если числитель и знаменатель дроби будет умножен или разделен на одно и то же натуральное число, то в результате получим дробь, равную исходной:

$\frac{a\cdot n}{b\cdot n}=\frac{a}{b}$

$\frac{a\div n}{b\div n}=\frac{a}{b}$

Пример 1

Пусть дан квадрат, разбитый на $4$ равных части. Если закрасить $2$ из $4$ частей, получим закрашенные $\frac{2}{4}$ всего квадрата. Если посмотреть на данный квадрат, то очевидно, что закрашена ровно его половина, т.е. ${1}{2}$. Таким образом, получаем $\frac{2}{4}=\frac{1}{2}$. Разложим числа $2$ и $4$ на множители:

Подставим эти разложения в равенство:

$\frac{1}{2}=\frac{2}{4}$,

$\frac{1}{2}=\frac{1\cdot 2}{2\cdot 2}$,

$\frac{1}{2}=\frac{2\div 2}{4\div 2}$.

Пример 2

Можно ли получить равную дробь, если и числитель, и знаменатель заданной дроби умножить на $18$, а затем разделить на $3$?

Решение .

Пусть дана некоторая обыкновенная дробь $\frac{a}{b}$. По условию числитель и знаменатель этой дроби умножили на $18$, получили:

$\frac{a\cdot 18}{b\cdot 18}$

$\frac{a\cdot 18}{b\cdot 18}=\frac{a}{b}$

$\frac{a\div 3}{b\div 3}$

Согласно основному свойству дроби:

$\frac{a\div 3}{b\div 3}=\frac{a}{b}$

Таким образом, получили в результате дробь, равную исходной.

Ответ : Можно получить дробь, равную исходной.

Применение основного свойства дроби

Основное свойство дроби чаще всего применяют для:

  • приведения дробей к новому знаменателю:
  • сокращения дробей.

Приведение дроби к новому знаменателю – замена заданной дроби такой дробью, которая будет ей равна, но иметь больше числитель и больше знаменатель. Для этого числитель и знаменатель дроби умножают на одно и то же натуральное число, в результате чего по основному свойству дроби получают дробь, равную исходной, но с большими числителем и знаменателем.

Сокращение дроби – замена заданной дроби такой дробью, которая будет ей равна, но иметь меньший числитель и меньший знаменатель. Для этого числитель и знаменатель дроби делят на положительный общий делитель числителя и знаменателя, отличный от нуля, в результате чего по основному свойству дроби получают дробь, равную исходной, но с меньшими числителем и знаменателем.

Если разделить (сократить) числитель и знаменатель на их НОД, то в результате получают несократимый вид исходной дроби .

Сокращение дробей

Как известно, обыкновенные дроби делятся на сократимые и несократимые .

Для сокращения дроби нужно выполнить деление и числителя, и знаменателя дроби на их положительный общий делитель, не равный нулю. При сокращении дроби получают новую дробь с меньшим числителем и знаменателем, по основному свойству дроби равную исходной.

Пример 3

Сократить дробь $\frac{15}{25}$.

Решение .

Сократим дробь на $5$ (разделим ее числитель и знаменатель на $5$):

$\frac{15}{25}=\frac{15\div 5}{25\div 5}=\frac{3}{5}$

Ответ : $\frac{15}{25}=\frac{3}{5}$.

Получение несократимой дроби

Чаще всего дробь сокращают для получения несократимой дроби, равной исходной сократимой дроби. Такого результата можно достичь, если разделить и числитель, и знаменатель исходной дроби на их НОД.

$\frac{a\div НОД (a,b)}{b\div НОД (a,b)}$ – несократимая дробь, т.к. согласно свойствам НОД числитель и знаменатель данной дроби – взаимно простые числа.

НОД(a,b) – наибольшее число, на которое можно разделить и числитель, и знаменатель дроби $\frac{a}{b}$. Таким образом, для приведения дроби к несократимому виду необходимо ее числитель и знаменатель разделить на их НОД.

Замечание 2

Правило сокращения дроби: 1. Найти НОД двух чисел, которые стоят в числителе и знаменателе дроби. 2. Выполнить деление числителя и знаменателя дроби на найденный НОД.

Пример 4

Привести дробь $6/36$ к несократимому виду.

Решение .

Сократим данную дробь на НОД$(6,36)=6$, т.к. $36\div 6=6$. Получим:

$\frac{6}{36}=\frac{6\div 6}{36\div 6}=\frac{1}{6}$

Ответ : $\frac{6}{36}=\frac{1}{6}$.

Практически фраза «сократить дробь» подразумевает, что нужно привести дробь к несократимому виду.


Подробно разобрано основное свойство дроби , дана его формулировка, приведено доказательство и поясняющий пример. Также рассмотрено применение основного свойства дроби при сокращении дробей и приведении дробей к новому знаменателю.

Навигация по странице.

Основное свойство дроби – формулировка, доказательство и поясняющие примеры

Давайте рассмотрим пример, иллюстрирующий основное свойство дроби. Пусть у нас есть квадрат, разделенный на 9 «больших» квадратов, а каждый из этих «больших» квадратов разделен на 4 «маленьких» квадрата. Таким образом, можно также говорить, что исходный квадрат разделен на 4·9=36 «маленьких» квадратов. Закрасим 5 «больших» квадратов. При этом закрашенными окажутся 4·5=20 «маленьких» квадратов. Приведем рисунок, отвечающий нашему примеру.

Закрашенная часть составляет 5/9 исходного квадрата, или, что то же самое, 20/36 исходного квадрата, то есть, дроби 5/9 и 20/36 равны: или . Из этих равенств, а также из равенств 20=5·4 , 36=9·4 , 20:4=5 и 36:4=9 следует, что и .

Для закрепления разобранного материала рассмотрим решение примера.

Пример.

Числитель и знаменатель некоторой обыкновенной дроби умножили на 62 , после чего числитель и знаменатель полученной дроби разделили на 2 . Равна ли полученная дробь исходной?

Решение.

Умножение числителя и знаменателя дроби на любое натуральное число, в частности на 62 , дает дробь, которая в силу основного свойства дроби, равна исходной. Основное свойство дроби позволяет утверждать и то, что после деления числителя и знаменателя полученной дроби на 2 получится дробь, которая будет равна исходной дроби.

Ответ:

Да, полученная дробь равна исходной.

Применение основного свойства дроби

Основное свойство дроби в основном применяется в двух случаях: во-первых, при приведении дробей к новому знаменателю, и, во-вторых, при сокращении дробей.

Основное свойство дроби позволяет проводить сокращение дробей , и в результате переходить от исходной дроби к равной ей дроби, но с меньшим числителем и знаменателем. Сокращение дроби заключается в делении числителя и знаменателя исходной дроби на любой отличный от единицы положительный числителя и знаменателя (если таких общих делителей нет, то исходная дробь несократима, то есть, не подлежит сокращению). В частности, деление на приведет исходную дробь к несократимому виду.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: учебник для 5 кл. общеобразовательных учреждений.
  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Говоря о математике, нельзя не вспомнить дроби. Их изучению уделяют немало внимания и времени. Вспомните, сколько примеров вам приходилось решать, чтобы усвоить те или иные правила работы с дробями, как вы запоминали и применяли основное свойство дроби. Сколько нервов было потрачено для нахождения общего знаменателя, особенно если в примерах было больше двух слагаемых!

Давайте же вспомним, что это такое, и немного освежим в памяти основные сведения и правила работы с дробями.

Определение дробей

Начнем, пожалуй, с самого главного - определения. Дробь - это число, которое состоит из одной или более частей единицы. Дробное число записывается в виде двух чисел, разделенных горизонтальной либо же косой чертой. При этом верхнее (или первое) называется числителем, а нижнее (второе) - знаменателем.

Стоит отметить, что знаменатель показывает, на сколько частей разделена единица, а числитель - количество взятых долей или частей. Зачастую дроби, если они правильные, меньше единицы.

Теперь давайте рассмотрим свойства данных чисел и основные правила, которые используются при работе с ними. Но прежде чем мы будем разбирать такое понятие, как "основное свойство рациональной дроби", поговорим о видах дробей и их особенностях.

Какими бывают дроби

Можно выделить несколько видов таких чисел. В первую очередь это обыкновенные и десятичные. Первые представляют собой уже указанный нами вид записи с помощью горизонтальной либо косой черты. Второй вид дробей обозначается с помощью так называемой позиционной записи, когда сначала идет указание целой части числа, а затем, после запятой, указывается дробная часть.

Тут стоит отметить, что в математике одинаково используются как десятичные, так и обыкновенные дроби. Основное свойство дроби при этом действительно только для второго варианта. Кроме того, в обыкновенных дробях выделяют правильные и неправильные числа. У первых числитель всегда меньше знаменателя. Отметим также, что такая дробь меньше единицы. В неправильной дроби наоборот - числитель больше знаменателя, а сама она больше единицы. При этом из нее можно выделить целое число. В данной статье мы рассмотрим только обыкновенные дроби.

Свойства дробей

Любое явление, химическое, физическое или математическое, имеет свои характеристики и свойства. Не стали исключением и дробные числа. Они имеют одну немаловажную особенность, с помощью которой над ними можно проводить те или иные операции. Каково основное свойство дроби? Правило гласит, что если ее числитель и знаменатель умножить либо же разделить на одно и то же рациональное число, мы получим новую дробь, величина которой будет равна величине исходной. То есть, умножив две части дробного числа 3/6 на 2, мы получим новую дробь 6/12, при этом они будут равны.

Исходя из этого свойства, можно сокращать дроби, а также подбирать общие знаменатели для той или иной пары чисел.

Операции

Несмотря на то что дроби кажутся нам более сложными, по сравнению с с ними также можно выполнять основные математические операции, такие как сложение и вычитание, умножение и деление. Кроме того, есть и такое специфическое действие, как сокращение дробей. Естественно, каждое из этих действий совершается согласно определенным правилам. Знание этих законов облегчает работу с дробями, делает ее более легкой и интересной. Именно поэтому дальше мы с вами рассмотрим основные правила и алгоритм действий при работе с такими числами.

Но прежде чем говорить о таких математических операциях, как сложение и вычитание, разберем такую операцию, как приведение к общему знаменателю. Вот тут нам как раз таки и пригодится знание того, какое основное свойство дроби существует.

Общий знаменатель

Для того чтобы число привести к общему знаменателю, сначала понадобится найти наименьшее общее кратное для двух знаменателей. То есть наименьшее число, которое одновременно делится на оба знаменателя без остатка. Наиболее простой способ подобрать НОК (наименьшее общее кратное) - выписать в строчку для одного знаменателя, затем для второго и найти среди них совпадающее число. В том случае, если НОК не найдено, то есть у данных чисел нет общего кратного числа, следует перемножить их, а полученное значение считать за НОК.

Итак, мы нашли НОК, теперь следует найти дополнительный множитель. Для этого нужно поочередно разделить НОК на знаменатели дробей и записать над каждой из них полученное число. Далее следует умножить числитель и знаменатель на полученный дополнительный множитель и записать результаты в виде новой дроби. Если вы сомневаетесь в том, что полученное вами число равняется прежнему, вспомните основное свойство дроби.

Сложение

Теперь перейдем непосредственно к математическим операциям над дробными числами. Начнем с самой простой. Есть несколько вариантов сложения дробей. В первом случае оба числа имеют одинаковый знаменатель. В таком случае остается лишь сложить числители между собой. Но знаменатель не меняется. Например, 1/5 + 3/5 = 4/5.

В случае если у дробей разные знаменатели, следует привести их к общему и лишь затем выполнять сложение. Как это сделать, мы с вами разобрали чуть выше. В данной ситуации вам как раз и пригодится основное свойство дроби. Правило позволит привести числа к общему знаменателю. При этом значение никоим образом не изменится.

Как вариант, может случиться, что дробь является смешанной. Тогда следует сначала сложить между собой целые части, а затем уже дробные.

Умножение

Не требует никаких хитростей, и для того чтобы выполнить данное действие, необязательно знать основное свойство дроби. Достаточно сначала перемножить между собой числители и знаменатели. При этом произведение числителей станет новым числителем, а знаменателей - новым знаменателем. Как видите, ничего сложного.

Единственное, что от вас требуется, - знание таблицы умножения, а также внимательность. Кроме того, после получения результата следует обязательно проверить, можно ли сократить данное число или нет. О том, как сокращать дроби, мы расскажем немного позже.

Вычитание

Выполняя следует руководствоваться теми же правилами, что и при сложении. Так, в числах с одинаковым знаменателем достаточно от числителя уменьшаемого отнять числитель вычитаемого. В том случае, если у дробей разные знаменатели, следует привести их к общему и затем выполнить данную операцию. Как и в аналогичном случае со сложением, вам понадобится использовать основное свойство алгебраической дроби, а также навыки в нахождении НОК и общих делителей для дробей.

Деление

И последняя, наиболее интересная операция при работе с такими числами - деление. Она довольно простая и не вызывает особых трудностей даже у тех, кто плохо разбирается, как работать с дробями, в особенности выполнять операции сложения и вычитания. При делении действует такое правило, как умножение на обратную дробь. Основное свойство дроби, как и в случае с умножением, задействовано для данной операции не будет. Разберем подробнее.

При делении чисел делимое остается без изменений. Дробь-делитель превращается в обратную, то есть числитель со знаменателем меняются местами. После этого числа перемножаются между собой.

Сокращение

Итак, мы с вами уже разобрали определение и структуру дробей, их виды, правила операций над данными числами, выяснили основное свойство алгебраической дроби. Теперь поговорим о такой операции, как сокращение. Сокращением дроби называется процесс ее преобразования - деление числителя и знаменателя на одно и то же число. Таким образом, дробь сокращается, не меняя при этом своих свойств.

Обычно при совершении математической операции следует внимательно посмотреть на полученный в итоге результат и выяснить, возможно ли сократить полученную дробь или же нет. Помните, что в итоговый результат всегда записывается не требующее сокращения дробное число.

Другие операции

Напоследок отметим, что мы перечислили далеко не все операции над дробными числами, упомянув лишь самые известные и необходимые. Дроби также можно сравнять, преобразовать в десятичные и наоборот. Но в данной статье мы не стали рассматривать данные операции, так как в математике они осуществляются намного реже, чем те, что были приведены нами выше.

Выводы

Мы с вами поговорили о дробных числах и операциях с ними. Разобрали также основное свойство Но заметим, что все эти вопросы были рассмотрены нами вскользь. Мы привели лишь наиболее известные и употребляемые правила, дали наиболее важные, на наш взгляд, советы.

Данная статья призвана скорее освежить забытые вами сведения о дробях, нежели дать новую информацию и "забить" голову бесконечными правилами и формулами, которые, вероятнее всего, вам так и не пригодятся.

Надеемся, что материал, представленный в статье просто и лаконично, стал для вас полезным.

Данная тема достаточно важна на основных свойствах дробей основана вся дальнейшая математика и алгебра. Рассмотренные свойства дробей, не смотря на свою важность очень просты.

Чтобы понять основные свойства дробей рассмотрим окружность.

На окружности видно, что 4 части или закрашены из восьми возможных. Запишем полученную дробь \(\frac{4}{8}\)

На следующей окружности видно, что закрашена одна часть из двух возможных. Запишем получившеюся дробь \(\frac{1}{2}\)

Если внимательно приглядимся, то увидим, что в первом случае, что во втором случае у нас закрашено половина круга, поэтому полученные дроби равны \(\frac{4}{8} = \frac{1}{2}\), то есть это одно и тоже число.

Как же это доказать математически? Очень просто, вспомним таблицу умножения и распишем первую дробь на множители.

\(\frac{4}{8} = \frac{1 \cdot \color{red} {4}}{2 \cdot \color{red} {4}} = \frac{1}{2} \cdot \color{red} {\frac{4}{4}} =\frac{1}{2} \cdot \color{red}{1} = \frac{1}{2}\)

Что мы сделали? Расписали числитель и знаменатель на множители \(\frac{1 \cdot \color{red} {4}}{2 \cdot \color{red} {4}}\), а потом разделили дроби \(\frac{1}{2} \cdot \color{red} {\frac{4}{4}}\). Четыре поделить на четыре это 1, а единица умноженное на любое число это и есть само число. То что мы проделали в приведенном примере называется сокращением дробей .

Посмотрим еще один пример и сократим дробь.

\(\frac{6}{10} = \frac{3 \cdot \color{red} {2}}{5 \cdot \color{red} {2}} = \frac{3}{5} \cdot \color{red} {\frac{2}{2}} =\frac{3}{5} \cdot \color{red}{1} = \frac{3}{5}\)

Мы опять расписали числитель и знаменатель на множители и одинаковый числа в числители и знаменатели сократили. То есть два деленное на два дало единицу, а единица умноженная на любое число дает тоже самое число.

Основное свойство дроби.

Отсюда следует основное свойство дроби:

Если и числитель, и знаменатель дроби умножить на одно и тоже число (кроме нуля), то величина дроби не изменится.

\(\bf \frac{a}{b} = \frac{a \cdot n}{b \cdot n}\)

Также можно дроби числитель и знаменатель делить на одно и тоже число одновременно.
Рассмотрим пример:

\(\frac{6}{8} = \frac{6 \div \color{red} {2}}{8 \div \color{red} {2}} = \frac{3}{4}\)

Если и числитель, и знаменатель дроби делить на одно и тоже число (кроме нуля), то величина дроби не изменится.

\(\bf \frac{a}{b} = \frac{a \div n}{b \div n}\)

Дроби у которых есть и в числители, и в знаменатели общие простые делители называются сократимыми дробями .

Пример сократимой дроби: \(\frac{2}{4}, \frac{6}{10}, \frac{9}{15}, \frac{10}{5}, …\)

Так же есть и несократимые дроби .

Несократимая дробь – это дробь у которые нет в числители и знаменатели общих простых делителей.

Пример несократимой дроби: \(\frac{1}{2}, \frac{3}{5}, \frac{5}{7}, \frac{13}{5}, …\)

Любое число можно представить в виде дроби, потому что любое число делиться на единицу, например:

\(7 = \frac{7}{1}\)

Вопросы к теме:
Как вы думаете любую можно дробь сократить или нет?
Ответ: нет, бывают сократимые дроби и несократимые дроби.

Проверьте справедливо ли равенство: \(\frac{7}{11} = \frac{14}{22}\)?
Ответ: распишем дробь \(\frac{14}{22} = \frac{7 \cdot 2}{11 \cdot 2} = \frac{7}{11}\) , да справедливо.

Пример №1:
а) Найдите дробь со знаменателем 15, равную дроби \(\frac{2}{3}\) .
б) Найдите дробь с числителем 8, равную дроби \(\frac{1}{5}\) .

Решение:
а) Нам нужно чтобы в знаменателе стояло число 15. Сейчас в знаменателе число 3. На какое число нужно умножить цифру 3, чтобы получить 15? Вспомним таблицу умножения 3⋅5. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac{2}{3}\) на 5.

\(\frac{2}{3} = \frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15}\)

б) Нам нужно чтобы в числителе стояло число 8. Сейчас в числители стоит число 1. На какое число нужно умножить цифру 1, чтобы получить 8? Конечно, 1⋅8. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac{1}{5}\) на 8. Получим:

\(\frac{1}{5} = \frac{1 \cdot 8}{5 \cdot 8} = \frac{8}{40}\)

Пример №2:
Найдите несократимую дробь, равную дроби: а)\(\frac{16}{36}\), б) \(\frac{10}{25}\) .

Решение:
а) \(\frac{16}{36} = \frac{4 \cdot 4}{9 \cdot 4} = \frac{4}{9}\)

б) \(\frac{10}{25} = \frac{2 \cdot 5}{5 \cdot 5} = \frac{2}{5}\)

Пример №3:
Запишите число в виде дроби: а) 13 б)123

Решение:
а) \(13 = \frac{13} {1}\)

б) \(123 = \frac{123} {1}\)

Дробь — форма представления числа в математике. Дробная черта обозначает операцию деления. Числителем дроби называется делимое, а знаменателем — делитель. Например, в дроби числителем является число 5, а знаменателем — 7.

Правильной называется дробь, у которой модуль числителя больше модуля знаменателя. Если дробь является правильной, то модуль её значения всегда меньше 1. Все остальные дроби являются неправильными .

Дробь называют смешанной , если она записана как целое число и дробь. Это то же самое, что и сумма этого числа и дроби:

Основное свойство дроби

Если числитель и знаменатель дроби умножить на одно и то же число, то значение дроби не изменится, то есть, например,

Приведение дробей к общему знаменателю

Чтобы привести две дроби к общему знаменателю, нужно:

  1. Числитель первой дроби умножить на знаменатель второй
  2. Числитель второй дроби умножить на знаменатель первой
  3. Знаменатели обеих дробей заменить на их произведение

Действия с дробями

Сложение. Чтобы сложить две дроби, нужно

  1. Сложить новые числители обеих дробей, а знаменатель оставить без изменений

Пример:

Вычитание. Чтобы вычесть одну дробь из другой, нужно

  1. Привести дроби к общему знаменателю
  2. Вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений

Пример:

Умножение. Чтобы умножить одну дробь на другую, следует перемножить их числители и знаменатели.


Close