Алгебра логики и логические основы компьютера

Алгебра логики (булева алгебра) - это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля . Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.

Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, булева алгебра делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1, либо 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.

Что такое простое логическое высказывание? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.

Логические операции. Дизъюнкция, конъюнкция и отрицание

Так как же связываются между собой простые логические высказывания, образуя сложные? В естественном языке мы используем различные союзы и другие части речи. Например, «и», «или», «либо», «не», «если», «то», «тогда». Пример сложных высказываний: «у него есть знания и навыки», «она приедет во вторник, либо в среду», «я буду играть тогда, когда сделаю уроки», «5 не равно 6».

Как мы решаем, что нам сказали правду или нет? Как-то логически, даже где-то неосознанно, исходя из предыдущего жизненного опыта, мы понимает, что правда при союзе «и» наступает в случае правдивости обоих простых высказываний. Стоит одному стать ложью и все сложное высказывание будет лживо. А вот, при связке «либо» должно быть правдой только одно простое высказывание, и тогда все выражение станет истинным.

Булева алгебра переложила этот жизненный опыт на аппарат математики, формализовала его, ввела жесткие правила получения однозначного результата. Союзы стали называться здесь логическими операторами.


Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают &, дизъюнкцию - ||, а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции@/a> истина с ложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание - это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

Для логических величин обычно используются три операции:

Конъюнкция - логическое умножение (И) - and, &, ∧.

Дизъюнкция - логическое сложение (ИЛИ) - or, |, v.

Логическое отрицание (НЕ) - not,.

Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

Логические основы компьютера

В ЭВМ используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, триггеры, сумматоры.

Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в ЭВМ системе счисления. Как известно она двоичная. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.

Переключательные схемы

В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае - ток проходит, во втором - нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.

Вентили, триггеры и сумматоры

Вентиль представляет собой логический элемент, который принимает одни двоичные значения и выдает другие в зависимости от своей реализации. Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.

Триггеры и сумматоры - это относительно сложные устройства, состоящие из более простых элементов - вентилей.

Триггер способен хранить один двоичный разряд, за счет того, что может находиться в двух устойчивых состояниях. В основном триггеры используется в регистрах процессора.

Сумматоры широко используются в арифметико-логических устройствах (АЛУ) процессора и выполняют суммирование двоичных разрядов.

Информация и информационные процессы. Виды информации, её двоичное кодирование. Количество информации, подходы к определению понятия «количество информации», единицы измерения информации. Двоичное кодирование числовой, текстовой, графической, звуковой информации

Информация (от лат. informatio — «разъяснение, изложение, осведомлённость») — сведения о чём-либо, независимо от формы их представления.

В настоящее время не существует единого определения информации как научного термина. С точки зрения различных областей знания данное понятие описывается своим специфическим набором признаков. Понятие «информация» является базовым в курсе информатики, где невозможно дать его определение через другие, более «простые» понятия.

Свойства информации:

Объективность (информация объективна, если она не зависит от чьего-либо мнения, суждения);

Достоверность (информация достоверна, если она отражает истинное положение дел);

Полнота (информация полна, если ее достаточно для понимания и принятия решения);

Актуальность (информация актуальна, своевременна, если она важна, существенна для настоящего времени);

Полезность (оценивается по тем задачам, которые мы можем решить с ее помощью);

Понятность (информация понятна, если она выражена на языке, доступном для получателя);

Доступность (информация доступна, если мы можем её получить).

Информационный процесс - совокупность последовательных действий (операций), производимых над информацией (в виде данных, сведений, фактов, идей, гипотез , теорий и пр.), для получения какого-либо результата (достижения цели).

Информация проявляется именно в информационных процессах. Информационные процессы всегда протекают в каких-либо системах (социальных, социотехнических, биологических и пр.).

Наиболее обобщенными информационными процессами являются сбор, преобразование, использование информации.

К основным информационным процессам, изучаемым в курсе информатики, относятся: поиск, отбор, хранение, передача, кодирование, обработка, защита информации.

Информационные процессы, осуществляемые по определенным информационным технологиям, составляет основу информационной деятельности человека.

Компьютер является универсальным устройством для автоматизированного выполнения информационных процессов.

Люди имеют дело со многими видами информации. Общение людей друг с другом дома и в школе, на работе и на улице - это передача информации. Учительский рассказ или рассказ товарища, телевизионная передача, телеграмма, письмо, устное сообщение и т.д. - все это примеры передачи информации.

И мы уже говорили о том , что одну и ту же информацию можно передать и получить различными путями. Так, чтобы найти дорогу в музей в незнакомом городе, можно спросить прохожего, получить справку в справочном бюро, попытаться разобраться самому с помощью плана города или обратиться к путеводителю. Когда мы слушаем объяснение учителя, читаем книги или газеты, смотрим новости ТВ, посещаем музеи и выставки - в это время мы получаем информацию.

Человек хранит полученную информацию в голове. Мозг человека - огромное хранилище информации. Блокнот или записная книжка, ваш дневник, школьные тетрадки, библиотека, музей, кассета с записями любимых мелодий, видеокассеты - все это примеры хранения информации.

Информацию можно обрабатывать : перевод текста с английского языка на русский и наоборот, вычисление суммы по заданным слагаемым, решение задачи, раскрашивание картинок или контурных карт - все это примеры обработки информации. Все вы любили в свое время раскрашивать книжки-раскраски. Оказывается, в это время вы занимались важным процессом - обработкой информации, черно-белый рисунок превращали в цветной.

Информацию можно даже терять. Допустим, Иванов Дима забыл дневник дома и поэтому записал домашнее задание на листочке. Но, играя на перемене, он сделал из него самолетик и запустил его. Придя домой, Дима не смог сделать домашнюю работу, он потерял информацию. Теперь ему нужно или попытаться вспомнить, что же ему задали, или позвонить однокласснику, чтобы получить нужную информацию, или идти в школу с невыполненным домашним заданием.

Двоичное кодирование - один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.

Двоичный алфавит состоит из двух цифр 0 и 1.

Цифровые ЭВМ (персональные компьютеры относятся к классу цифровых) используют двоичное кодирование любой информации. В основном это объясняется тем, что построить техническое устройство, безошибочно различающее 2 разных состояния сигнала, технически оказалось проще, чем то, которое бы безошибочно различало 5 или 10 различных состояний.

К недостаткам двоичного кодирования относят очень длинные записи двоичных кодов, что затрудняет работу с ними.

вид сложного суждения, образованного из простых суждений при помощи союза «или». Дизъюнкция бывает нестрогой, когда ее элементы (входящие в нее простые суждения) друг друга не исключают.

Отличное определение

Неполное определение ↓

ДИЗЪЮНКЦИЯ

от лат. disjunctio - разобщение, различение)

Логическая операция - аналог употребления союза "или" в обычном языке, с помощью которой из двух или более исходных суждений строится новое суждение. Так, из суждений "Он - способен" и "Он - прилежен" с помощью операции "или" можно получить новое суждение "Он способен или он прилежен" (1). Из суждений "Он совершил преступление", "Он не совершал преступления" с помощью "или" можно получить новое суждение "Он совершил преступление или он не совершал преступления" (2). Суждение (1) истинно в трех случаях: 1) когда какой-то человек оказывается способным, но не прилежным; 2) когда этот человек оказывается прилежным, но не способным; 3) когда установлено, что этот человек и способен, и прилежен. Оно является ложным, когда оказалось, что этот человек не является ни способным, ни прилежным. Суждения типа (1) в логике называют соединительно-разделительными. Суждение же (2) истинно лишь только в том случае, когда имеет место или только первая ситуация ("Он совершил преступление"), или только вторая ситуация ("Он не совершал преступления"). Суждение (2) не допускает, чтобы имели место обе ситуации. Суждения типа (2) носят название исключающе-разделительных или строго разделительных.

Обозначения для логических связок:

отрицание (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);

конъюнкция (логическое умножение, логическое И) обозначается /\

(например, А /\ В) либо & (например, А & В);

дизъюнкция (логическое сложение, логическое ИЛИ) обозначается \/

(например, А \/ В);

следование (импликация) обозначается (например, А → В);

тождество обозначается (например, A ≡ B). Выражение A ≡ B истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);

символ 1 (единица) используется для обозначения истины (истинного высказывания);

символ 0 (ноль) используется для обозначения лжи (ложного высказывания).

Два логических выражения, содержащих переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения А → В и (¬А) \/ В равносильны, а А /\ В и А \/ В – нет (значения выражений разные, например, при А = 1, В = 0).

Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, ¬А \/ В \/ С \/ D означает то же, что и

((¬А) \/ В)\/ (С \/ D).

Возможна запись А \/ В \/ С вместо (А \/ В) \/ С. То же относится и к конъюнкции: возможна запись А /\ В /\ С вместо (А /\ В) /\ С.

Свойства логических операций

Общие свойства логических операций

Для набора из n логических переменных существует ровно 2n различных значений. Таблица истинности для логического выражения от n переменных содержит n+1 столбец и 2n строк.

Дизъюнкция

Если хоть одно из подвыражений, к которым применяется дизъюнкция, истинно на некотором наборе значений переменных, то и вся дизъюнкция истинна для этого набора значений.

Если все выражения из некоторого списка истинны на некотором наборе значений переменных, то дизъюнкция этих выражений тоже истинна.

Если все выражения из некоторого списка ложны на некотором наборе значений переменных, то дизъюнкция этих выражений тоже ложна.

Значение дизъюнкции не зависит от порядка записи подвыражений, к которым она применяется.

Конъюнкция

Если хоть одно из подвыражений, к которым применяется конъюнкция, ложно на некотором наборе значений переменных, то и вся конъюнкция ложна для этого набора значений.

Если все выражения из некоторого списка истинны на некотором наборе значений переменных, то конъюнкция этих выражений тоже истинна.

Если все выражения из некоторого списка ложны на некотором наборе значений переменных, то конъюнкция этих выражений тоже ложна.

Значение конъюнкции не зависит от порядка записи подвыражений, к которым она применяется.

Простые дизъюнкции и конъюнкции

Назовем (для удобства) конъюнкцию простой, если подвыражения, к которым применяется конъюнкция, – различные переменные или их отрицания. Аналогично, дизъюнкция называется простой, если подвыражения, к которым применяется дизъюнкция, – различные переменные или их отрицания.

Простая конъюнкция принимает значение 1 (истина) ровно на одном наборе значений переменных.

Простая дизъюнкция принимает значение 0 (ложь) ровно на одном наборе значений переменных.

Импликация

Импликация A →B равносильна дизъюнкции (¬А) \/ В. Эту дизъюнкцию можно записать и так: ¬А \/ В.

Импликация A →B принимает значение 0 (ложь) только если A=1 и B=0. Если A=0, то импликация A →B истинна при любом значении B.

Операция дизъюнкция (лат. disjunctio - разделение) (логическое сложение ) - это логическая операция, которая каждым двум простым высказываниям ставит в соответствие составное высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны и истинным, когда хотя бы одно из двух образующих его высказываний истинно.

Условное обозначение на структурных схемах логического элемента ИЛИ с двумя входами представлено на Рис. 2.8. Знак 1 на схеме - от устаревшего обозначения дизъюнкции как >=1 (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом F этой схемы и входами A и B описывается соотношением: F = A v B (читается как A или B).

Рис. 2.8. Логический элемент электронной схемы ИЛИ

Рассмотрим таблицу истинности для операции дизъюнкции ИЛИ с двумя входами A и B.

Таблица 2.3

Операция дизъюнкции (логическое сложение)

А (вход) B(вход) A v B (выход)

Для обозначения дизъюнкции используют знаки Ú, + , или .

Операции дизъюнкции в электрических контактных схемах соответствует параллельное соединение контактов. Например, электрическая контактная схема на рисунке 2.9 соответствует дизъюнкции .

Рис. 2.9 Параллельное соединение контактов

Набор выше рассмотренных логических функций НЕ, И, ИЛИ (отрицание, конъюнкция, дизъюнкция) наиболее известный и называется функционально полным набором или базисом . С помощью этих логических функций можно выразить любые другие логические функции.

Нестрогая и строгая дизъюнкция

Поскольку связка «или» употребляется в естественном языке в двух значениях – соединительно-разделительном и исключающе-разделительном, то следует различать два типа разделительных суждений: 1) нестрогую (слабую) дизъюнкцию и 2) строгую (сильную) дизъюнкцию.

Нестрогая дизъюнкция суждение, в котором связка «или» употребляется в соединительно-разделительном значении (символ ?). Напр.: «Холодное оружие может быть колющим или режущим» – символически р ? q. Связка «или» в данном случае разделяет, поскольку отдельно существуют такие виды оружия, и соединяет, ибо есть оружие, одновременно и колющее, и режущее.

Нестрогая дизъюнкция будет истинна при истинности хотя бы одного члена дизъюнкции и ложна, если оба ее члена будут ложны.

Строгая дизъюнкция суждение, в котором связка «или» употребляется в разделительном значении (символ двойная дизъюнкция). Напр.: «Деяние может быть умышленным или неосторожным», символически.

Члены строгой дизъюнкции, называемые альтернативами, не могут быть одновременно истинными. Если деяние совершено умышленно, то его нельзя считать неосторожным, и, наоборот, деяние, совершенное по неосторожности, не может быть отнесено к умышленным.

Строгая дизъюнкция будет истинна при истинности одного и ложности другого члена; она будет ложна, если оба члена истинны или оба ложны. Таким образом, суждение строгой дизъюнкции будет истинным при истинности одной альтернативы и ложным как при одновременной ложности, так и одновременной истинности альтернатив.

Разделительная связка в языке обычно выражается с помощью союзов «или», «либо». С целью усиления дизъюнкции до альтернативного значения нередко употребляют удвоенные союзы: вместо выражения «р или употребляют «или р, или q», а вместе «р либо – «либо р, либо q». Поскольку в грамматике отсутствуют однозначные союзы для нестрогого и строгого разделения, то вопрос о типе дизъюнкции в юридических и других текстах должен решаться содержательным анализом соответствующих суждений.

Полная и неполная дизъюнкция

Полным или закрытым называют дизъюнктивное суждение, в котором перечислены все признаки или все виды определенного рода.

Символически это суждение можно записать следующим образом: < р ? q ? r >. Напр.: «Леса бывают лиственные, хвойные или смешанные». Полнота этого разделения (в символической записи обозначается знаком < … >) определяется тем, что не существует помимо указанных, других видов лесов.

Неполным, или открытым, называют дизъюнктивное суждение, в котором перечислены не все признаки или не все виды определенного рода. В символической записи неполнота дизъюнкции может быть выражена многоточием: р ? q ? r ? В естественном языке неполнота дизъюнкции выражается словами: «и т. д.», «и др.», «и тому подобное», «иные» и др.


Close