Долей единицы и представляется в виде \frac{a}{b} .

Числитель дроби (a) — число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) — число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

Скрыть Показать

Основное свойство дроби

Если ad=bc , то две дроби \frac{a}{b} и \frac{c}{d} считаются равными. К примеру, равными будут дроби \frac35 и \frac{9}{15} , так как 3 \cdot 15 = 15 \cdot 9 , \frac{12}{7} и \frac{24}{14} , так как 12 \cdot 14 = 7 \cdot 24 .

Из определения равенства дробей следует, что равными будут дроби \frac{a}{b} и \frac{am}{bm} , так как a(bm)=b(am) — наглядный пример применения сочетательного и переместительного свойств умножения натуральных чисел в действии.

Значит \frac{a}{b} = \frac{am}{bm} — так выглядит основное свойство дроби .

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Сокращение дроби — это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, \frac{45}{60}=\frac{15}{20} (числитель и знаменатель делится на число 3 ); полученную дробь снова можно сократить, разделив на 5 , то есть \frac{15}{20}=\frac 34 .

Несократимая дробь — это дробь вида \frac 34 , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби — сделать дробь несократимой.

Приведение дробей к общему знаменателю

Возьмем в качестве примера две дроби: \frac{2}{3} и \frac{5}{8} с разными знаменателями 3 и 8 . Для того, чтобы привести данные дроби к общему знаменателю и сначала перемножим числитель и знаменатель дроби \frac{2}{3} на 8 . Получаем следующий результат: \frac{2 \cdot 8}{3 \cdot 8} = \frac{16}{24} . Затем умножаем числитель и знаменатель дроби \frac{5}{8} на 3 . Получаем в итоге: \frac{5 \cdot 3}{8 \cdot 3} = \frac{15}{24} . Итак, исходные дроби приведены к общему знаменателю 24 .

Арифметические действия над обыкновенными дробями

Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b} ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

\frac{7}{3}+\frac{1}{4}=\frac{7 \cdot 4}{3}+\frac{1 \cdot 3}{4}=\frac{28}{12}+\frac{3}{12}=\frac{31}{12} .

Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

\frac{a}{b}-\frac{c}{b}=\frac{a-c}{b} ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} ,

то есть перемножают отдельно числители и знаменатели.

Например:

\frac{3}{5} \cdot \frac{4}{8} = \frac{3 \cdot 4}{5 \cdot 8}=\frac{12}{40} .

Деление обыкновенных дробей

Деление дробей производят следующим способом:

\frac{a}{b} : \frac{c}{d}= \frac{ad}{bc} ,

то есть дробь \frac{a}{b} умножается на дробь \frac{d}{c} .

Пример: \frac{7}{2} : \frac{1}{8}=\frac{7}{2} \cdot \frac{8}{1}=\frac{7 \cdot 8}{2 \cdot 1}=\frac{56}{2} .

Взаимно обратные числа

Если ab=1 , то число b является обратным числом для числа a .

Пример: для числа 9 обратным является \frac{1}{9} , так как 9 \cdot \frac{1}{9}=1 , для числа 5 — \frac{1}{5} , так как 5 \cdot \frac{1}{5}=1 .

Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10\,000, ..., 10^n .

Например: \frac{6}{10}=0,6;\enspace \frac{44}{1000}=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 5\frac{1}{10}=5,1;\enspace \frac{763}{100}=7\frac{63}{100}=7,63 .

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

Пример: 5 — делитель числа 100 , поэтому дробь \frac{1}{5}=\frac{1 \cdot 20}{5 \cdot 20}=\frac{20}{100}=0,2 .

Арифметические действия над десятичными дробями

Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

Вычитание десятичных дробей

Выполняется аналогично сложению.

Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 . Отделяем справа две цифры запятой (у первого и второго числа — одна цифра после запятой; 1+1=2 ). В итоге получаем 2,7 \cdot 1,3=3,51 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10\,000 = 14 700 .

Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

2,8: 0,09= \frac{28}{10} : \frac {9}{100}= \frac{28 \cdot 100}{10 \cdot 9}=\frac{280}{9}=31 \frac{1}{9} .

Из курса алгебры школьной программы переходим к конкретике. В этой статье мы подробно изучим особый вид рациональных выражений – рациональные дроби , а также разберем, какие характерные тождественные преобразования рациональных дробей имеют место.

Сразу отметим, что рациональные дроби в том смысле, в котором мы их определим ниже, в некоторых учебниках алгебры называют алгебраическими дробями. То есть, в этой статье мы под рациональными и алгебраическими дробями будем понимать одно и то же.

По обыкновению начнем с определения и примеров. Дальше поговорим про приведение рациональной дроби к новому знаменателю и о перемене знаков у членов дроби. После этого разберем, как выполняется сокращение дробей. Наконец, остановимся на представлении рациональной дроби в виде суммы нескольких дробей. Всю информацию будем снабжать примерами с подробными описаниями решений.

Навигация по странице.

Определение и примеры рациональных дробей

Рациональные дроби изучаются на уроках алгебры в 8 классе. Мы будем использовать определение рациональной дроби, которое дается в учебнике алгебры для 8 классов Ю. Н. Макарычева и др.

В данном определении не уточняется, должны ли многочлены в числителе и знаменателе рациональной дроби быть многочленами стандартного вида или нет. Поэтому, будем считать, что в записях рациональных дробей могут содержаться как многочлены стандартного вида, так и не стандартного.

Приведем несколько примеров рациональных дробей . Так , x/8 и - рациональные дроби. А дроби и не подходят под озвученное определение рациональной дроби, так как в первой из них в числителе стоит не многочлен, а во второй и в числителе и в знаменателе находятся выражения, не являющиеся многочленами.

Преобразование числителя и знаменателя рациональной дроби

Числитель и знаменатель любой дроби представляют собой самодостаточные математические выражения, в случае рациональных дробей – это многочлены, в частном случае – одночлены и числа. Поэтому, с числителем и знаменателем рациональной дроби, как и с любым выражением, можно проводить тождественные преобразования. Иными словами, выражение в числителе рациональной дроби можно заменять тождественно равным ему выражением, как и знаменатель.

В числителе и знаменателе рациональной дроби можно выполнять тождественные преобразования . Например, в числителе можно провести группировку и приведение подобных слагаемых, а в знаменателе – произведение нескольких чисел заменить его значением. А так как числитель и знаменатель рациональной дроби есть многочлены, то с ними можно выполнять и характерные для многочленов преобразования, например, приведение к стандартному виду или представление в виде произведения.

Для наглядности рассмотрим решения нескольких примеров.

Пример.

Преобразуйте рациональную дробь так, чтобы в числителе оказался многочлен стандартного вида, а в знаменателе – произведение многочленов.

Решение.

Приведение рациональных дробей к новому знаменателю в основном применяется при сложении и вычитании рациональных дробей .

Изменение знаков перед дробью, а также в ее числителе и знаменателе

Основное свойство дроби можно использовать для смены знаков у членов дроби. Действительно, умножение числителя и знаменателя рациональной дроби на -1 равносильно смене их знаков, а в результате получится дробь, тождественно равная данной. К такому преобразованию приходится достаточно часто обращаться при работе с рациональными дробями.

Таким образом, если одновременно изменить знаки у числителя и знаменателя дроби, то получится дробь, равная исходной. Этому утверждению отвечает равенство .

Приведем пример. Рациональную дробь можно заменить тождественно равной ей дробью с измененными знаками числителя и знаменателя вида .

С дробями можно провести еще одно тождественное преобразование, при котором меняется знак либо в числителе, либо в знаменателе. Озвучим соответствующее правило. Если заменить знак дроби вместе со знаком числителя или знаменателя, то получится дробь, тождественно равная исходной. Записанному утверждению соответствуют равенства и .

Доказать эти равенства не составляет труда. В основе доказательства лежат свойства умножения чисел. Докажем первое из них: . С помощью аналогичных преобразований доказывается и равенство .

Например, дробь можно заменить выражением или .

В заключение этого пункта приведем еще два полезных равенства и . То есть, если изменить знак только у числителя или только у знаменателя, то дробь изменит свой знак. Например, и .

Рассмотренные преобразования, позволяющие изменять знак у членов дроби, часто применяются при преобразовании дробно рациональных выражений.

Сокращение рациональных дробей

В основе следующего преобразования рациональных дробей, имеющего название сокращение рациональных дробей, лежит все тоже основное свойство дроби. Этому преобразованию соответствует равенство , где a , b и c – некоторые многочлены, причем b и c - ненулевые.

Из приведенного равенства становится понятно, что сокращение рациональной дроби подразумевает избавление от общего множителя в ее числителе и знаменателе.

Пример.

Сократите рациональную дробь .

Решение.

Сразу виден общий множитель 2 , выполним сокращение на него (при записи общие множители, на которые сокращают, удобно зачеркивать). Имеем . Так как x 2 =x·x и y 7 =y 3 ·y 4 (при необходимости смотрите ), то понятно, что x является общим множителем числителя и знаменателя полученной дроби, как и y 3 . Проведем сокращение на эти множители: . На этом сокращение завершено.

Выше мы выполняли сокращение рациональной дроби последовательно. А можно было выполнить сокращение в один шаг, сразу сократив дробь на 2·x·y 3 . В этом случае решение выглядело бы так: .

Ответ:

.

При сокращении рациональных дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель рациональной дроби разложить на множители. Если общего множителя нет, то исходная рациональная дробь не нуждается в сокращении, в противном случае – проводится сокращение.

В процессе сокращения рациональных дробей могут возникать различные нюансы. Основные тонкости на примерах и в деталях разобраны в статье сокращение алгебраических дробей .

Завершая разговор о сокращении рациональных дробей, отметим, что это преобразование является тождественным, а основная сложность в его проведении заключается в разложении на множители многочленов в числителе и знаменателе.

Представление рациональной дроби в виде суммы дробей

Достаточно специфическим, но в некоторых случаях очень полезным, оказывается преобразование рациональной дроби, заключающееся в ее представлении в виде суммы нескольких дробей, либо сумме целого выражения и дроби.

Рациональную дробь, в числителе которой находится многочлен, представляющий собой сумму нескольких одночленов, всегда можно записать как сумму дробей с одинаковыми знаменателями, в числителях которых находятся соответствующие одночлены. Например, . Такое представление объясняется правилом сложения и вычитания алгебраических дробей с одинаковыми знаменателями .

Вообще, любую рациональную дробь можно представить в виде суммы дробей множеством различных способов. Например, дробь a/b можно представить как сумму двух дробей – произвольной дроби c/d и дроби, равной разности дробей a/b и c/d . Это утверждение справедливо, так как имеет место равенство . К примеру, рациональную дробь можно представить в виде суммы дробей различными способами: Представим исходную дробь в виде суммы целого выражения и дроби. Выполнив деление числителя на знаменатель столбиком, мы получим равенство . Значение выражение n 3 +4 при любом целом n является целым числом. А значение дроби является целым числом тогда и только тогда, когда ее знаменатель равен 1 , −1 , 3 или −3 . Этим значениям отвечают значения n=3 , n=1 , n=5 и n=−1 соответственно.

Ответ:

−1 , 1 , 3 , 5 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

В математике дробь - это число, состоящее из одной или нескольких частей (долей) единицы. По форме записи дроби делятся на обыкновенные (пример \frac{5}{8}) и десятичные (например 123,45).

Определение. Обыкновенная дробь (или простая дробь)

Обыкновенной (простой) дробью называется число вида \pm\frac{m}{n} где m и n – натуральные числа. Число m называется числителем этой дроби, а число n – её знаменателем .

Горизонтальная или косая черта обозначает знак деления, то есть \frac{m}{n}={}^m/n=m:n

Обыкновенные дроби делятся на два вида: правильные и неправильные.

Определение. Правильная и неправильная дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Например, \frac{9}{11} , ведь 9

Неправильной называется дробь, у которой модуль числителя больше или равен модулю знаменателя. Такая дробь представляет собой рациональное число, по модулю большее или равное единице. Примером будут дроби \frac{11}{2} , \frac{2}{1} , -\frac{7}{5} , \frac{1}{1}

Наряду с неправильной дробью существует иная запись числа, которая называется смешанной дробью (смешанным числом). Такая дробь не является обыкновенной.

Определение. Смешанная дробь (смешанное число)

Смешанной дробью называется дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби. Например, 2\frac{5}{7}

(запись в виде смешанного числа) 2\frac{5}{7}=2+\frac{5}{7}=\frac{14}{7}+\frac{5}{7}=\frac{19}{7} (запись в виде неправильной дроби)

Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные. Сформируем признак равенства двух обыкновенных дробей.

Определение. Признак равенства дробей

Две дроби \frac{a}{b} и \frac{c}{d} являются равными , если a\cdot d=b\cdot c . Например, \frac{2}{3}=\frac{8}{12} так как 2\cdot12=3\cdot8

Из указанного признака следует основное свойство дроби.

Свойство. Основное свойство дроби

Если числитель и знаменатель данной дроби умножить или разделить на одно и то же число, неравное нулю, то получится дробь, равная данной.

\frac{A}{B}=\frac{A\cdot C}{B\cdot C}=\frac{A:K}{B:K};\quad C \ne 0,\quad K \ne 0

С помощью основного свойства дроби можно заменить данную дробь другой дробью, равной данной, но с меньшими числителем и знаменателем. Такая замена называется сокращением дроби. Например, \frac{12}{16}=\frac{6}{8}=\frac{3}{4} (здесь числитель и знаменатель разделили сначала на 2, а потом ещё на 2). Сокращение дроби можно провести тогда и только тогда, когда её числитель и знаменатель не являются взаимно простыми числами. Если же числитель и знаменатель данной дроби взаимно просты, то дробь сократить нельзя, например, \frac{3}{4} – несократимая дробь.

Правила для положительных дробей:

Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}

Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13} .

Чтобы сравнить две дроби с разными числителями и знаменателями, нужно преобразовать обе дроби так, чтобы их знаменатели стали одинаковыми. Такое преобразование называется приведением дробей к общему знаменателю.

При изучении обыкновенных дробей, сталкиваемся с понятиями основного свойства дроби. Формулировка упрощенного вида необходима для решения примеров с обыкновенными дробями. Данная статья предполагает рассматривание алгебраических дробей и применение к ним основного свойства, которое будет сформулировано с приведением примеров области его применения.

Формулировка и обоснование

Основное свойство дроби имеет формулировку вида:

Определение 1

При одновременном умножении или делении числителя и знаменателя на одно и то же число, значение дроби остается неизменным.

То есть, получаем, что a · m b · m = a b и a: m b: m = a b равнозначны, где a b = a · m b · m и a b = a: m b: m считаются справедливыми. Значения a , b , m являются некоторыми натуральными числами.

Деление числителя и знаменателя на число можно изобразить в виде a · m b · m = a b . Это аналогично решению примера 8 12 = 8: 4 12: 4 = 2 3 . При делении используется равенство вида a: m b: m = a b , тогда 8 12 = 2 · 4 2 · 4 = 2 3 . Его же можно представить в виде a · m b · m = a b , то есть 8 12 = 2 · 4 3 · 4 = 2 3 .

То есть, основное свойство дроби a · m b · m = a b и a b = a · m b · m будем рассматривать подробно в отличие от a: m b: m = a b и a b = a: m b: m .

Если в числителе и знаменателе имеются действительные числа, тогда свойство применимо. Предварительно следует доказать справедливость записанного неравенства для всех чисел. То есть, доказать существование a · m b · m = a b для всех действительных a , b , m , где b и m являются отличными от нуля значениями во избежание деления на ноль.

Доказательство 1

Пусть дробь вида a b считается частью записи z , иначе говоря, a b = z , тогда необходимо доказать, что a · m b · m отвечает z , то есть доказать a · m b · m = z . Тогда это позволит доказать существование равенства a · m b · m = a b .

Черта дроби означает знак деления. Применив связь с умножением и делением, получим, что из a b = z после преобразования получаем a = b · z . По свойствам числовых неравенств следует произвести умножение обеих частей неравенства на число, отличное от нуля. Тогда произведем умножение на число m, получаем, что a · m = (b · z) · m . По свойству имеем право записать выражение в виде a · m = (b · m) · z . Значит, из определения следует, что a b = z . Вот и все доказательство выражения a · m b · m = a b .

Равенства вида a · m b · m = a b и a b = a · m b · m имеют смысл, когда вместо a , b , m будут многочлены, причем вместо b и m – ненулевые.

Основное свойство алгебраической дроби: когда одновременно умножить числитель и знаменатель на одно и то же число, получим тождественно равное исходному выражение.

Свойство считается справедливым, так как действия с многочленами соответствуют действиям с числами.

Пример 1

Рассмотрим на примере дроби 3 · x x 2 - x y + 4 · y 3 . Возможно преобразование к виду 3 · x · (x 2 + 2 · x · y) (x 2 - x y + 4 · y 3) · (x 2 + 2 · x · y).

Было произведено умножение на многочлен x 2 + 2 · x · y . Таким же образом основное свойство помогает избавиться от x 2 , имеющегося в заданной по условию дроби вида 5 · x 2 · (x + 1) x 2 · (x 3 + 3) к виду 5 · x + 5 x 3 + 3 . Это называется упрощением.

Основное свойство можно записать в виде выражений a · m b · m = a b и a b = a · m b · m , когда a , b , m являются многочленами или обычными переменными, причем b и m должны являться ненулевыми.

Сферы применения основного свойства алгебраической дроби

Применение основного свойства актуально для приведения к новому знаменателю или при сокращении дроби.

Определение 2

Приведение к общему знаменателю – это умножение числителя и знаменателя на аналогичный многочлен для получения нового. Полученная дробь равна исходной.

То есть дробь вида x + y · x 2 + 1 (x + 1) · x 2 + 1 при умножении на x 2 + 1 и приведении к общему знаменателю (x + 1) · (x 2 + 1) получит вид x 3 + x + x 2 · y + y x 3 + x + x 2 + 1 .

После проведения действий с многочленами получаем, что алгебраическая дробь преобразуется в x 3 + x + x 2 · y + y x 3 + x + x 2 + 1 .

Приведение к общему знаменателю выполняется также при сложении или вычитании дробей. Если даны дробные коэффициенты, то предварительно необходимо произвести упрощение, что позволит упростить вид и само нахождение общего знаменателя. Например, 2 5 · x · y - 2 x + 1 2 = 10 · 2 5 · x · y - 2 10 · x + 1 2 = 4 · x · y - 20 10 · x + 5 .

Применение свойства при сокращении дробей выполняется в 2 этапа: разложение числителя и знаменателя на множители для поиска общего m , после чего осуществить переход к виду дроби a b , основываясь на равенстве вида a · m b · m = a b .

Если дробь вида 4 · x 3 - x · y 16 · x 4 - y 2 после разложения преобразуется на x · (4 · x 2 - y) 4 · x 2 - y · 4 · x 2 + y , очевидно, что общим множителем будет многочлен 4 · x 2 − y . Тогда возможно будет произвести сокращение дроби по основному его свойству. Получим, что

x · (4 · x 2 - y) 4 · x 2 - y · 4 · x 2 + y = x 4 · x 2 + y . Дробь упрощается, тогда при подстановке значений необходимо будет выполнять намного меньше действий, чем при подстановке в исходную.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Данная тема достаточно важна на основных свойствах дробей основана вся дальнейшая математика и алгебра. Рассмотренные свойства дробей, не смотря на свою важность очень просты.

Чтобы понять основные свойства дробей рассмотрим окружность.

На окружности видно, что 4 части или закрашены из восьми возможных. Запишем полученную дробь \(\frac{4}{8}\)

На следующей окружности видно, что закрашена одна часть из двух возможных. Запишем получившеюся дробь \(\frac{1}{2}\)

Если внимательно приглядимся, то увидим, что в первом случае, что во втором случае у нас закрашено половина круга, поэтому полученные дроби равны \(\frac{4}{8} = \frac{1}{2}\), то есть это одно и тоже число.

Как же это доказать математически? Очень просто, вспомним таблицу умножения и распишем первую дробь на множители.

\(\frac{4}{8} = \frac{1 \cdot \color{red} {4}}{2 \cdot \color{red} {4}} = \frac{1}{2} \cdot \color{red} {\frac{4}{4}} =\frac{1}{2} \cdot \color{red}{1} = \frac{1}{2}\)

Что мы сделали? Расписали числитель и знаменатель на множители \(\frac{1 \cdot \color{red} {4}}{2 \cdot \color{red} {4}}\), а потом разделили дроби \(\frac{1}{2} \cdot \color{red} {\frac{4}{4}}\). Четыре поделить на четыре это 1, а единица умноженное на любое число это и есть само число. То что мы проделали в приведенном примере называется сокращением дробей .

Посмотрим еще один пример и сократим дробь.

\(\frac{6}{10} = \frac{3 \cdot \color{red} {2}}{5 \cdot \color{red} {2}} = \frac{3}{5} \cdot \color{red} {\frac{2}{2}} =\frac{3}{5} \cdot \color{red}{1} = \frac{3}{5}\)

Мы опять расписали числитель и знаменатель на множители и одинаковый числа в числители и знаменатели сократили. То есть два деленное на два дало единицу, а единица умноженная на любое число дает тоже самое число.

Основное свойство дроби.

Отсюда следует основное свойство дроби:

Если и числитель, и знаменатель дроби умножить на одно и тоже число (кроме нуля), то величина дроби не изменится.

\(\bf \frac{a}{b} = \frac{a \cdot n}{b \cdot n}\)

Также можно дроби числитель и знаменатель делить на одно и тоже число одновременно.
Рассмотрим пример:

\(\frac{6}{8} = \frac{6 \div \color{red} {2}}{8 \div \color{red} {2}} = \frac{3}{4}\)

Если и числитель, и знаменатель дроби делить на одно и тоже число (кроме нуля), то величина дроби не изменится.

\(\bf \frac{a}{b} = \frac{a \div n}{b \div n}\)

Дроби у которых есть и в числители, и в знаменатели общие простые делители называются сократимыми дробями .

Пример сократимой дроби: \(\frac{2}{4}, \frac{6}{10}, \frac{9}{15}, \frac{10}{5}, …\)

Так же есть и несократимые дроби .

Несократимая дробь – это дробь у которые нет в числители и знаменатели общих простых делителей.

Пример несократимой дроби: \(\frac{1}{2}, \frac{3}{5}, \frac{5}{7}, \frac{13}{5}, …\)

Любое число можно представить в виде дроби, потому что любое число делиться на единицу, например:

\(7 = \frac{7}{1}\)

Вопросы к теме:
Как вы думаете любую можно дробь сократить или нет?
Ответ: нет, бывают сократимые дроби и несократимые дроби.

Проверьте справедливо ли равенство: \(\frac{7}{11} = \frac{14}{22}\)?
Ответ: распишем дробь \(\frac{14}{22} = \frac{7 \cdot 2}{11 \cdot 2} = \frac{7}{11}\) , да справедливо.

Пример №1:
а) Найдите дробь со знаменателем 15, равную дроби \(\frac{2}{3}\) .
б) Найдите дробь с числителем 8, равную дроби \(\frac{1}{5}\) .

Решение:
а) Нам нужно чтобы в знаменателе стояло число 15. Сейчас в знаменателе число 3. На какое число нужно умножить цифру 3, чтобы получить 15? Вспомним таблицу умножения 3⋅5. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac{2}{3}\) на 5.

\(\frac{2}{3} = \frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15}\)

б) Нам нужно чтобы в числителе стояло число 8. Сейчас в числители стоит число 1. На какое число нужно умножить цифру 1, чтобы получить 8? Конечно, 1⋅8. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac{1}{5}\) на 8. Получим:

\(\frac{1}{5} = \frac{1 \cdot 8}{5 \cdot 8} = \frac{8}{40}\)

Пример №2:
Найдите несократимую дробь, равную дроби: а)\(\frac{16}{36}\), б) \(\frac{10}{25}\) .

Решение:
а) \(\frac{16}{36} = \frac{4 \cdot 4}{9 \cdot 4} = \frac{4}{9}\)

б) \(\frac{10}{25} = \frac{2 \cdot 5}{5 \cdot 5} = \frac{2}{5}\)

Пример №3:
Запишите число в виде дроби: а) 13 б)123

Решение:
а) \(13 = \frac{13} {1}\)

б) \(123 = \frac{123} {1}\)


Close