Изобретения Яблочкова

На рис. 4 показана «свеча Яблочкова», а также электрический фонарь, как он впервые был осуществлён Яблочковым. При работе на переменном токе оба угля сгорают с одной и той же скоростью, изолирующая масса между ними испаряется и, таким образом, сохраняются постоянное расстояние между концами углей и постоянная длина электрической дуги, независимо от колебаний питающего дугу напряжения. На рис. 5 и 6 показано предложенное Яблочковым приспособление для помещения в фонаре четырёх свечей, зажигаемых одна за другой при помощи коммутатора по мере сгорания каждой из них.

Рис. 4. Свеча и электрический фонарь Яблочкова.

Рис. 5. «Подсвечник» (держатель) к свечам Яблочкова.

Рис. 6. 1 - подсвечник; 2 - коммутатор Яблочкова.

Результатом опытов Яблочкова явилась не только разработка свечи. Он обнаружил, что сопротивление многих тугоплавких тел электрическому току, как то: каолина, магнезии и т. д., уменьшается при нагревании, вопреки широко распространённому тогда мнению, будто сопротивление всех твёрдых тел увеличивается с повышением температуры, как это имеет место в металлах. Сила электрического тока, проходящего через каолиновую пластинку и разогревающего её, растёт, и раскалённая пластинка начинает ярко светиться. Обнаружив это явление, Яблочков использовал его для изготовления лампы накаливания, не требовавшей удаления воздуха. Телом накала в этой лампе служила каолиновая пластинка, вырезанная в форме той или иной фигуры или буквы, как это показано на рис. 7.

Рис. 7. Форма каолиновых стерженьков в лампе накаливания Яблочкова.

Идея ламп накаливания, предложенная Яблочковым, та же, что и в запатентованной 20 лет спустя и имевшей крупнейший успех лампы физика-химика В. Нернста.

Яблочков считал, что лампы накаливания вообще очень невыгодны. Он совершенно не верил в возможность их успешного применения в широком масштабе и поэтому не использовал этого своего открытия в полной мере.

Зажигание электрической дуги в «свече Яблочкова» первоначально достигалось помещением между концами основных углей специальных уголёчков, служивших запалом. Вскоре Яблочков стал применять в качестве запала полоску из какого-либо металла, наносимого на верхнюю грань изолирующего угли тела.

Яблочков стал также примешивать к изолирующей массе, помещённой между углями, порошки металла, например цинка. При сгорании угля изолирующая масса испарялась, а находившийся в ней металл выделялся ка её поверхности в виде полоски. Это позволяло, возобновляя подачу тока, повторно зажигать свечу. Прибавление различных металлов отзывалось также на яркости пламени дуги и позволяло придавать цвету этого пламени тот или иной приятный для общего освещения оттенок.

«Свечи Яблочкова» хватало на полтора часа горения. В каждом фонаре на так называемом «подсвечнике» укреплялось по нескольку свечей. Из них горела всегда только одна, именно та, для которой условия горения были наиболее благоприятны. Эти наиболее благоприятные условия заключались в том, что горела та свеча, омическое сопротивление которой было наименьшим. Когда она погасала, загоралась следующая и т. д.

При работе на постоянном токе температура раскалённого конца того из двух углей электрической дуги, который соединён с положительным полюсом источника тока, много выше, чем температура раскалённого конца второго угля, соединённого с отрицательным полюсом источника тока. Для того чтобы при этих условиях оба угля укорачивались одинаково быстро, обеспечивая этим постоянную длину дуги, Яблочкову пришлось делать диаметр положительного угля примерно в два раза больше, чем диаметр отрицательного. Неудобство, вызываемое необходимостью точного подбора диаметров углей, Яблочков обошёл тем, что предложил пользоваться для питания дуги переменным током вместо общепринятого тогда постоянного тока. При работе на переменном токе концы обоих углей имеют одну и ту же температуру и сгорают с одной и той же скоростью.

Для электрического освещения по методу Яблочкова стали строить динамомашины переменного тока.

Рис. 8. Общая схема электрического освещения Яблочкова: 1 - фонарь; 2 - коммутатор; 3 - динамо-электрическая машина.

Таким образом, изобретение «свечи Яблочкова» впервые привело к применению в электротехнике переменного тока. Этот ток, кроме электрического освещения, имеет, как скоро оказалось, большие преимущества перед постоянным током и в других областях электротехники.

Задачу дробления электрического света Яблочков решил несколькими различными способами. В противоположность фонарям с регуляторами, 4–5 «свечей Яблочкова» можно было включать последовательно в одну электрическую цепь. Кроме того, он предложил включать в основную электрическую цепь машины последовательно первичные обмотки нескольких индукторных катушек, а цепи с последовательно включёнными свечами питать токами, наведёнными во вторичных обмотках тех же катушек, как это показано на рис. 9.

Рис. 9. Схема Яблочкова - дробления электрического света при помощи трансформаторов: 1 - трансформаторы; 2 - держатели «свечей».

При пользовании машинами постоянного тока необходимо было включать в первичную цепь прерыватель. При переходе на переменный ток дело опять сильно упростилось, так как прерыватели были уже не нужны и вся схема работала на принципе трансформатора. Таким образом, П. Н. Яблочков впервые применил этот принцип для практических целей. Несколькими годами позже лаборант физического кабинета Московского университета И. Ф. Усагин построил для осуществления идеи Яблочкова вместо индукторных катушек специальные приборы, явившиеся уже настоящими трансформаторами. Третий предложенный Яблочковым способ дробления света заключался в применении для этой цели конденсаторов.

По схеме, изображённой на рис. 10, одна из обкладок каждого конденсатора присоединялась к общему проводу, соединённому с одним из полюсов динамомашины переменного тока. Другая обкладка того же конденсатора заземлялась через одну или несколько последовательно включённых «свечей Яблочкова». Второй полюс динамо-машины также был заземлён непосредственно или через конденсаторы и свечи, как показано на рисунке.

Рис. 10. Схема Яблочкова - дробления электрического света при помощи конденсаторов: а - при включении «свечей Яблочкова» без посредства земли; б - «свечи» включены между наружной обкладкой лейденской банки (конденсатора) и землею. Перекрещенным наискось прямоугольником показано положение динамомашины переменного тока.

Тотчас же после изобретения и лабораторного испробования «свечи» Яблочков придал всей горелке техническое оформление, допускавшее её применение на практике. В 1876 году он выезжал в Лондон на выставку точных и физических приборов. «Свеча Яблочкова» имела большой успех на этой выставке.

После возвращения изобретателя из Лондона он познакомился с одним предприимчивым французом, владельцем мастерских, изготовлявших водолазные приборы. Тот предоставил в распоряжение Яблочкова свои мастерские для серийного производства свечей и необходимой аппаратуры. В то же время было учреждено достаточно мощное акционерное «Общество изучения электрического освещения по методам Яблочкова». Были организованы испытания по освещению некоторых первоклассных парижских магазинов и больших улиц при помощи «свечей Яблочкова». Эти испытания расширялись со всё большим и большим успехом. Началось широкое распространение нового электрического освещения не только в Париже, но и в других крупных европейских центрах - Лондоне, Петербурге, Мадриде, Неаполе, Берлине. Это было поистине триумфальное шествие «свечи Яблочкова» по Европе. На востоке она распространилась, по выражению современников, «до дворцов шаха персидского и короля Камбоджи».

Парижане, привыкшие к тусклому свету керосиновых и газовых горелок и стеариновых свечей, были поражены блеском и яркостью нового освещения и всюду восторгались «русским светом», как они его называли.

Современники Яблочкова красочно описывают, как каждый вечер в начале сумерок на площади Оперы собиралась большая толпа народа. Все глаза были устремлены на два ряда белых матовых шаров, подвешенных на высоких столбах по обе стороны проспекта Оперы. Внезапно эти гирлянды шаров загорались приятным светом. Публика, собиравшаяся там, сравнивала их с нитью жемчуга на фоне чёрного бархата.

В современных Яблочкову журналах мы находим изображения помещений, ипподрома, улиц, гавани, гостиниц, ярко озарённых «русским светом» (см. рис. 11, 12, 13, 14, 15).

Это название было выгравировано по желанию Яблочкова на оправе всех его фонарей. На парижской выставке 1878 года «свечи Яблочкова» имели громадный успех.

Рис. 11. Ипподром, освещённый фонарями Яблочкова.

Рис. 12. Морской порт, освещённый фонарями Яблочкова.

Тис. 13. Проспект Оперы в Париже, освещённый фонарями Яблочкова.

Рис. 14. Салон гостиницы, освещённый фонарями Яблочкова.

Рис. 15. Магазин, освещённый фонарями Яблочкова.

Павел Яблочков и его изобретение

Ровно 140 лет назад, 23 марта 1876 года, великий русский изобретатель Павел Николаевич Яблочков запатентовал свою знаменитую электрическую лампочку. Несмотря на то, что век ее оказался недолог, лампочка Яблочкова стала прорывом для российской науки и первым изобретением русского ученого, получившим широкую известность за границей.

Давайте вспомним, какой вклад внес Яблочков в развитие электрической светотехники и что сделало его на короткий срок одним из самых популярных ученых Европы.

Первые дуговые лампы

В первой половине XIX века в сфере искусственного освещения на смену господствовавшим на протяжении веков свечам пришли газовые лампы. Их тусклый свет стал освещать фабрики и магазины, театры и гостиницы, и, конечно же, улицы ночных городов. Однако, при относительном удобстве в эксплуатации, газовые лампы имели слишком маленькую светоотдачу, да и специально изготавливаемый для них светильный газ стоил отнюдь недешево.

С открытием электричества и изобретением первых источников тока стало ясно, что будущее светотехники лежит именно в этой области. Развитие электрического освещения изначально пошло по двум направлениям: конструирование дуговых ламп и ламп накаливания. Принцип работы первых основывался на эффекте ​электрической дуги , хорошо всем знакомом по электросварке. С детства родители запрещали нам смотреть на ее ослепляющий огонь, и не зря — электрическая дуга способна порождать чрезвычайно яркий источник света.

Дуговые лампы начали широко использоваться примерно с середины XIX века, когда французский физик Жан Бернар Фуко предложил использовать в них электроды не из древесного, а из ретортного угля, что существенно повышало продолжительность их горения.

Но такие дуговые лампы требовали внимания — по мере сгорания электродов, необходимо было сохранять постоянное расстояние между ними, чтобы электрическая дуга не гасла. Для этого использовались очень хитрые механизмы, в частности — регулятор Фуко, придуманный тем же самым французским изобретателем. Регулятор был весьма сложно устроен: механизм включал три пружины и требовал постоянного к себе внимания. Все это делало дуговые лампы чрезвычайно неудобными в использовании. Решить эту проблему взялся русский изобретатель Павел Яблочков.

Яблочков берется за дело

Проявлявший с детства тягу к изобретательству уроженец Саратова Яблочков в 1874 году устроился работать начальником службы телеграфа на железную дорогуМосква-Курск. К этому времени Павел окончательно решил сконцентрировать свое творческое внимание на усовершенствовании существовавших тогда дуговых ламп.

Начальство железной дороги, знавшее о его увлечении, предложило начинающему изобретателю интересное дело. Из Москвы в Крым должен был проследовать правительственный поезд и для обеспечения его безопасности было придумано организовать для машиниста ночное освещение пути.

Один из примеров регулирующих механизмов в дуговых лампах того времени

Яблочков с радостью согласился, взял с собой дуговую лампу с регулятором Фуко и, прикрепив ее к передней части локомотива, всю дорогу до Крыма каждую ночью дежурил возле прожектора. Примерно раз в полтора часа ему приходилось менять электроды, а также постоянно следить за регулятором. Несмотря на то, что опыт по освещению в целом удался, было понятно, что широкого применения такой способ получить не может. Яблочков решил попытаться усовершенствовать регулятор Фуко, чтобы упростить эксплуатацию лампы.

Гениальное решение

В 1875 году Яблочков, проводя в лаборатории опыт по электролизу поваренной соли, случайно вызвал между двумя параллельно расположенными угольными электродами появление электрической дуги. В этот момент Яблочкову пришла в голову идея, как улучшить конструкцию дуговой лампы таким образом, чтобы регулятор вовсе перестал бы быть нужным.

Лампочка Яблочкова(или, как ее было принято называть в то время « свеча Яблочкова») была устроена, как и все гениальное, довольно просто. Угольные электроды в ней располагались вертикально и параллельно друг к другу. Концы электродов были соединены тонкой металлической нитью, которая поджигала дугу, а между электродами находилась полоска изолирующего материала. По мере сгорания углей, сгорал и изоляционный материал.

Вот так выглядела свеча Яблочкова. Красная полоса - это и есть изоляционный материал

В первый моделях лампы после отключения электричества поджечь ту же самую свечу не представлялось возможным, так как не было контакта между двумя уже подожженными электродами. Позже Яблочков начал подмешивать в изоляционные полоски порошки различных металлов, которые, при затухании дуги, образовывали на торце специальную полоску. Это позволяло использовать недогоревшие угли повторно.

Догоревшие же электроды моментально заменялись новыми. Это приходилось делать примерно раз в два часа — именно на столько их хватало. Поэтому лампочку Яблочкова логичней было называть именно свечой — менять ее приходилось даже чаще, чем изделие из воска. Зато она была в сотни раз ярче.

Всемирное признание

Завершил создание своего изобретения Яблочков в 1876 году уже в Париже. Из Москвы ему пришлось уехать по финансовым обстоятельствам — будучи талантливым изобретателем, Яблочков был бездарным предпринимателем, что, как правило, выливалось в банкротство и долги всех его предприятий.

В Париже, одном из мировых центров науки и прогресса, Яблочков со своим изобретением быстро достигает успеха. Устроившись в мастерскую академика Луи Бреге, 23 марта 1876 года Яблочков получает патент, после чего его дела под чужим руководством начинают идти в гору.

В том же году изобретение Яблочкова производит фурор на выставке физических приборов в Лондоне. Им тут же начинают интересоваться все крупные европейские потребители и в течениикаких-тодвух лет свеча Яблочкова появляется на улицах Лондона, Парижа, Берлина, Вены, Рима и великого множества других городов Европы. Электрические свечи заменяют устаревшее освещение в театрах, магазинах, богатых домах. Ими умудрились подсветить даже огромный парижский ипподром и развалины Колизея.

Так свеча Яблочкова освещала ночной Париж

Свечи расходились в громадных по тем временам объемах — завод Бреге выпускал по 8 тысяч штук ежедневно. Спросу также поспособствовали и последующие улучшения самого Яблочкова. Так, с помощью примесей, добавляемых в изолятор из ​каолина , Яблочков добился более мягкого и приятного спектра излучаемого света.

А так - Лондон

В России свечи Яблочкова впервые появились в 1878 году в Петербурге. В этом же году изобретатель временно возвращается на родину. Здесь его бурно встречают почестями и поздравлениями. Целью возвращения стало создание коммерческого предприятия, которое помогло бы ускорить электрификацию и способствовать распространению в России электрических ламп.

Однако, уже упомянутые скудные предпринимательские таланты изобретателя вкупе с традиционной для российского чиновничества инертностью и предвзятостью помешали грандиозным планам. Несмотря на большие денежные вливания, такого, как в Европе распространения свечи Яблочкова в России не получили.

Закат свечи Яблочкова

На самом деле, закат дуговых ламп начался еще до изобретения Яблочковым своей свечи. Многие этого не знают, но первый в мире патент на лампу накаливания также получил русский ученый — ​Александр Николаевич Лодыгин . И сделано это было еще в 1874 году.

Яблочков, конечно же, про изобретения Лодыгина прекрасно знал. Более того, косвенно он и сам принял участие в разработке первых ламп накаливания. В 1875-76годах, при работе над изоляционной перегородкой для своей свечи, Яблочков открыл возможность использования коалина в качестве нити в подобных лампах. Но изобретатель посчитал, что у ламп накаливания нет будущего и до конца своих дней над их конструкцией целенаправленно так и не работал. История показала, что в этом Яблочков грубо ошибся.

Во второй половине1870-хгодов американский изобретатель Томас Эдиссон патентует свою лампу накаливания с угольной нитью, срок службы которой составлял 40 часов. Несмотря на многие недостатки, она начинает быстро вытеснять дуговые лампы. А уже в 1890-хгодах лампочка принимает знакомый нам вид — все тот же Александр Лодыгин сначала предлагает использовать для изготовления нити тугоплавкие металлы, в том числе — вольфрам, и закручивать их в спираль, а затем первым же откачивает из колбы воздух, чтобы увеличить срок службы нити. Первая в мире коммерческая лампа накаливания с закрученной вольфрамовой спиралью производилась именно по патенту Лодыгина.

Одна из ламп Лодыгина

Эту революцию электрического освещения Яблочков уже практически не застал, скоропостижно скончавшись в 1894 году, в возрасте 47 лет. Ранняя смерть стала следствием отравления ядовитым хлором, с которым изобретатель много работал в экспериментах. За свою недолгую жизнь Яблочков успел создать еще несколько полезных изобретений — первые в мире генератор и трансформатор переменного тока, а также деревянные сепараторы для химических аккумуляторов, используемые и поныне.

И хотя свеча Яблочкова в своем первоначальном виде канула в небытие, как и все дуговые лампы того времени, в новом качестве она продолжает существовать и сегодня — в виде газоразрядных ламп, последнее время повсеместно внедряемых вместо ламп накаливания. Хорошо знакомые всем неоновые, ксеноновые или ртутные лампы(которые также называют « ​лампами дневного света ») работают, основываясь на том же принципе, что и легендарная свеча Яблочкова.

Первая дуговая электрическая лампа была изобретена в 1802 г. русским физиком В.В. Петровым. Ее основу составляли два угольных стержня, располагавшиеся горизонтально. Один из них присоединялся к положительному полюсу электрической батареи, другой — к отрицательному. Разогреваясь, стержни начинали светиться, и между ними возникала светящаяся электрическая дуга. Чтобы получить такую дугу, следовало разводить угольные стержни на строго определенное расстояние, что было трудно осуществить технически.

В середине XIX в. французский физик Ж. Фуко придумал регулятор, который автоматически поддерживал необходимое расстояние между углями. Однако это усложнило конструкцию лампы. В конце XIX в. идея создания удобной в использовании электрической лампочки, что называется, витала в воздухе. П.Н. Яблочков одним из пер-вых принялся за решение этой проблемы.

«Свеча Яблочкова» отличалась простой конструкцией. Угольные электроды изобретатель расположил не горизонтально, как это делали до него, а; вертикально, поместив между ними.изолятор (фарфоровую вставку). При пропускании через «свечу» электрического тока вверху возникала светящаяся дуга, зажигавшая электроды. Чтобы добиться равномерного освещения, Яблочков обмазывал электроды слоем каолина — бе-лой глины, выполнявшей роль изолятора. Лампы работали в течение часа, а затем сгорали. Чтобы лампа светила дольше, Яблочков увеличил толщину одного угольного стержня, а также использовал переменный ток.

К изобретателю пришла слава. В Париже его лампочками был впервые освещен магазин «Лувр». Газовые фонари на улицах французской столицы были демонтированы — их повсеместно заменили «свечи Яблочкова». Помещенные в белые матовые шары, они давали приятный яркий свет.

Лампы Яблочкова можно было встретить не только в Париже: они горели на центральных улицах всех европейских столиц, В залах и ресторанах лучших гостиниц, на аллеях крупнейших парков Европы. На предприятиях товарищества выпускалось по 10 тыс. лампочек в день, а раскупались они мгновенно (одна лампочка стоила 20 копеек, что было по тем временам не так уж дешево).

Но триумф русского изобретателя был недолгим. Вскоре стали утверждать, что на самом деле свет пришел не из России, а из Америки и что русский ученый специально сделал свои лампы недолговечными, чтобы разбогатеть. Но и объективно будущее принадлежало не дуговой лампе, а лампе накаливания, изобретенной нашим соотечественником А.Н. Лодыгиным и усовершенствованной Т. Эдисоном (именно такой лампой мы пользуемся до сих пор).

В 1879 г. П.Н. Яблочков вернулся в Россию. В Петербурге было налажено производство дуговых ламп, но запустить их в широкое потребление не удалось. Тем не менее заслуга изобретателя несомненна. Благодаря «свече Яблочкова» в жизни людей наступила новая эра: электрический свет перестал восприниматься как чудо. Сегодня мы вспоминаем о П.Н. Яблочкове с глубоким уважением к его многотрудной жизни и его изобретению.

100 великих русских изобретений, Вече 2008

Свеча Яблочкова - один из вариантов электрической угольной дуговой лампы, изобретённый в 1876 году Павлом Николаевичем Яблочковым .

История создания и применения

Первые опыты с электрическим освещением Павел Николаевич Яблочков начал проводить ещё в своей московской мастерской в 1872 и 1873 годах. Учёный работал тогда с регуляторами разных систем, а затем с вышедшей в то время угольной лампой А. Н. Лодыгина. Яблочков брал тонкие угольки и помещал их между двумя проводниками. Для того чтобы уголь не сгорал, Яблочков обматывал его волокнами горного льна. Идея была в том, чтобы уголь, накаливаясь не сгорал, а накаливал только окружающий его горный лён. Хотя эти опыты были неудачными, они подсказали Яблочкову идею применения в электрическом освещении глины и других подобных материалов.

В 1875 году во время одного из многочисленных опытов по электролизу растворов поваренной соли параллельно расположенные угли, погружённые в электролитическую ванну, случайно, коснулись друг друга. Тотчас между ними вспыхнула электрическая дуга, на короткий миг осветившая ярким светом стены лаборатории. Это натолкнуло Павла Николаевича на мысль о создании более совершенного устройства дуговой лампы без регулятора межэлектродного расстояния - будущей «свечи Яблочкова». В октябре того же года Яблочков уехал за границу. Оказавшись в Париже он устроился на работу в мастерские физических приборов профессора Антуана Бреге. Однако его не покидала мысль о создании дуговой лампы без регулятора.

К началу весны 1876 года Яблочков завершил разработку конструкции электрической свечи и 23 марта того же года получил на неё французский патент за № 112024, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. Свеча Яблочкова оказалась проще, удобнее и дешевле в эксплуатации, чем угольная лампа Лодыгина, она не имела ни механизмов, ни пружин.

15 апреля 1876 года Яблочков принял участие в выставке физических приборов, которая открылась в Южном Кенсингстоне (Лондон). Там учёный выступал как в качестве представителя фирмы Бреге, так и самостоятельно - экспонировал свою свечу. Лондон стал местом первого публичного показа нового источника света. На невысоких металлических постаментах, установленных на большом расстоянии друг от друга, Яблочков поставил четыре своих свечи, обёрнутых в асбест. К светильникам был подведён ток от динамо-машины, находившейся в соседнем помещении. Поворотом рукоятки ток был включён в сеть, и тотчас обширное помещение залил очень яркий, чуть голубоватый электрический свет. Многочисленная публика пришла в восторг.

Парижский ипподром, освещённый свечами Яблочкова

Лондонская улица, освещённая свечами Яблочкова

Общая схема электрического освещения Яблочкова: фонарь на 4 свечи с коммутатором, питаемый от динамо-машины Грамма

Успех свечи Яблочкова превзошёл ожидания. Вся мировая печать, в особенности техническая, была полна сведениями о новом источнике света. Газеты выходили с заголовками: «Вы должны видеть свечу Яблочкова» ; «Изобретение русского отставного военного инженера Яблочкова - новая эра в технике» ; «Свет приходит к нам с Севера - из России» ; «Северный свет, русский свет, - чудо нашего времени» ; «Россия - родина электричества» и т. д.

В конце лета 1876 года Яблочков вернулся из Лондона в Париж, где его познакомили с инженером и предпринимателем Луи Денейрузом. Для практической реализации своих изобретений и организации производства электрических свечей во Франции, по совету Антуана Бреге, Яблочков заключил с Денейрузом договор, на основании которого тот создал компанию «Syndicat d’etude d’eclairage electrique procedes Jablochkoff». Эта компания помимо производства свечей, вела также работы по установке первичных двигателей и динамомашин для осветительных установок со свечами Яблочкова и полное их оборудование. В первые годы своего существования экспортный оборот компании составил более 5 млн франков. Сам Павел Николаевич, уступив право на использование своих изобретений владельцам компании, как руководитель её технического отдела, продолжал трудиться над дальнейшим усовершенствованием системы освещения, довольствуясь более чем скромной долей от огромных прибылей компании.

Первая установка освещения свечами Яблочкова была устроена в феврале 1877 года в «Salle Marengo» магазина Лувр и состояла из 6 свечей, питаемых двумя машинами «Alliance». Во время действия их наблюдалось мерцание, объясняемое неоднородностью углей и колебаниями числа оборотов двигателя, и дребезжание колпаков («пение» свечи). В фонарях приходилось часто менять свечи после их выгорания, а для того, что бы помещение не оставалось при этом в темноте, оказалось нужным устроить особое приспособление для смены ламп.

Для расширения производства электрических свечей необходимо было решить несколько проблем, главной из которых была проблема обеспечения осветительных установок генераторами переменного тока. Первым шагом в этом направлении было построение мастерскими бельгийского изобретателя Зиновия Теофиля Грамма особого коммутатора, который присоединялся к машине постоянного тока; однако это было лишь частичным разрешением задачи. В 1877 году Грамм выпустил первые машины переменного тока для питания свечей Яблочкова. При помощи этих машин удобно было питать четыре обособленных цепи, в каждую из которых можно было включать несколько свечей. Машины были рассчитаны на электрические свечи в 100 карселей , то есть силой света 961 кандела.

Вслед за магазином Лувр свечи Яблочкова были установлены на площади перед зданием Парижской оперы, в мае 1877 года они впервые осветили одну из магистралей столицы - Avenue de l’Opera. Жители французской столицы в начале сумерек толпами стекались полюбоваться гирляндами белых матовых шаров, установленных на высоких металлических столбах. И когда все фонари разом вспыхивали ярким и приятным светом, публика приходила в восторг. Не меньшее восхищение вызывало освещение парижского крытого ипподрома. Его беговая дорожка освещалась 20 дуговыми лампами с отражателями, а места для зрителей - 120 электрическими свечами Яблочкова, расположенными в два ряда.

17 июня 1877 года свечи Яблочкова установили на Вест-Индских доках в Лондоне, несколько позже свечи Яблочкова осветили часть набережной Темзы, мост Ватерлоо, отель «Метрополь», Гатфильдский замок, Вестгейтские морские пляжи. Почти одновременно с Англией свечи Яблочкова вспыхнули в помещении торговой конторы Юлия Михаэлиса в Берлине. Новое электрическое освещение с исключительной быстротой завоевало Бельгию и Испанию, Португалию и Швецию. В Италии им осветили Колизей, Национальную улицу и площадь Колона в Риме, в Вене - парк Фольскгартен, в Греции - Фалернскую бухту. На Американском континенте «русский свет» впервые вспыхнул в 1878 году в Калифорнийском театре (California Theatre; ныне не существует) в Сан-Франциско. 26 декабря того же года свечи Яблочкова осветили магазины Винемара в Филадельфии; затем улицы и площади Рио-де-Жанейро и городов Мексики. Появились они в Дели, Калькутте, Мадрасе и ряде других городов Британской Индии. Даже персидский шах и король Камбоджи осветили «русским светом» свои дворцы.

В России первая проба электрического освещения по системе Яблочкова была проведена 11 октября 1878 года. В этот день были освещены казармы Кронштадтского учебного экипажа и площадь у дома, занимаемого командиром Кронштадтского морского порта. Спустя две недели, 4 декабря 1878 года, свечи Яблочкова - 8 шаров, впервые осветили Большой театр в Санкт-Петербурге. Газета «Новое время» в номере от 6 декабря писала:

Ни одно из изобретений в области электротехники не получало столь быстрого и широкого распространения, как свечи Яблочкова. Это был подлинный триумф русского инженера.

Компании по коммерческой эксплуатации свечи Яблочкова были основаны во многих странах мира. Свечи Яблочкова появились в продаже и начали расходиться в громадном количестве, так, к примеру, предприятие Бреге ежедневно выпускало свыше 8 тысяч свечей. Каждая свеча стоила около 20 копеек.

Успех освещения по системе Яблочкова вызвал панику среди акционеров английских газовых компаний. Они пустили в ход все средства, вплоть до явных обманов, клеветы и подкупов, чтобы дискредитировать новый способ освещения. По их настоянию английский парламент учредил в 1879 году даже специальную комиссию с целью рассмотрения вопроса о допустимости широкого использования электрического освещения в Британской империи. После длительных дебатов и выслушивания свидетельских показаний члены комиссии так и не пришли к единому мнению по этому вопросу.

В 1877 году русский морской офицер А. Н. Хотинский принимал в Америке крейсеры, строящиеся по заказу России. Он посетил лабораторию Т. Эдисона и передал ему лампу накаливания А. Н. Лодыгина и «свечу Яблочкова» со схемой дробления света. Эдисон внёс некоторые усовершенствования и в ноябре 1879 года получил на них патент как на свои изобретения. Яблочков выступил в печати с жёсткой критикой, заявив, что Томас Эдисон украл у русских не только их мысли и идеи, но и их изобретения. Профессор В. Н. Чиколев писал тогда, что способ Эдисона был не нов и обновления его ничтожны.

Прошедшая в 1881 году в Париже Международная электротехническая выставка, показала, что свеча Яблочкова и его система освещения начали терять своё значение. Хотя изобретения Яблочкова получили высокую оценку и были признаны постановлением Международного жюри вне конкурса, сама выставка явилась триумфом лампы накаливания, которую Т. Эдисон довёл до практического совершенства ещё к 1879 году. Она могла гореть 800-1000 часов без замены, её можно было много раз зажигать, гасить и снова зажигать. К тому же она была и экономичнее свечи. Всё это оказало сильное влияние на дальнейшую работу Павла Николаевича. Начиная с 1882 года он целиком переключился на создание мощного и экономичного химического источника тока.

Свеча Яблочкова в России

Свеча Яблочкова (из фондов Саратовского областного музея краеведения)

В 1878 году Яблочков решил вернуться в Россию, чтобы заняться проблемой распространения электрического освещения. На родине он был восторженно встречен как изобретатель-новатор. Вскоре после приезда изобретателя в Санкт-Петербург была учреждена акционерная компания «Товарищество электрического освещения и изготовления электрических машин и аппаратов П. Н. Яблочков-изобретатель и К°», в числе акционеров которой были промышленники, финансисты, военные - поклонники электрического освещения свечами Яблочкова. Содействие изобретателю оказывали генерал-адмирал Константин Николаевич, композитор Н. Г. Рубинштейн и другие известные лица. Компания открыла свой электротехнический завод на Обводном канале.

Первая проба электрического освещения по системе Яблочкова была проведена в России 11 октября 1878 года. В этот день были освещены казармы Кронштадтского учебного экипажа и площадь у дома, занимаемого командиром Кронштадтского морского порта. Спустя две недели, 4 декабря 1878 года, свечи Яблочкова - 8 шаров, впервые осветили Большой театр в Санкт-Петербурге. Газета «Новое время» в номере от 6 декабря писала:

Весной 1879 года товарищество «Яблочков-изобретатель и К°» соорудило ряд установок электрического освещения. Большинство работ по установке электрических свечей, разработке технических планов и проектов проводилось под руководством Павла Николаевича. Свечи Яблочкова, изготовляемые парижским, а затем петербургским заводом общества, зажглись в Москве и Подмосковье, Ораниенбауме, Киеве, Нижнем Новгороде, Гельсингфорсе (Хельсинки), Одессе, Харькове, Николаеве, Брянске, Архангельске, Полтаве, Красноводске, Саратове и других городах России.

С наибольшим интересом изобретение П. Н. Яблочкова было встречено в учреждениях военно-морского флота. К середине 1880 года в России было установлено около 500 фонарей со свечами Яблочкова. Из них больше половины было установлено на военных судах и на заводах военного и военно-морского ведомств. Например, на Кронштадтском пароходном заводе было установлено 112 фонарей, на царской яхте «Ливадия» - 48 фонарей, на других судах флота - 60 фонарей, при этом установки для освещения улиц, площадей, вокзалов и садов имели каждая не более 10-15 фонарей.

Однако электрическое освещение в России такого широкого распространения, как за границей, не получило. Причин для этого было много: русско-турецкая война, отвлекавшая много средств и внимания, техническая отсталость России, инертность, а подчас и предвзятость городских властей. Не удалось создать и сильную компанию с привлечением крупного капитала, недостаток средств ощущался всё время. Немаловажную роль сыграла и неопытность в финансово-коммерческих делах самого главы предприятия. Павел Николаевич часто отлучался по делам в Париж, а в правлении, как писал В. Н. Чиколев в «Воспоминаниях старого электрика», «…недобросовестные администраторы нового товарищества стали швырять деньги десятками и сотнями тысяч, благо они давались легко!» .

Конструктивные особенности

Подсвечники для свечи Яблочкова с пружинным зажимом

Лампа для свечи Яблочкова (Париж)

Устройство свечи Яблочкова

Первая модель свечи Яблочкова, которая демонстрировалась на выставке в Лондоне, состояла из двух параллельно расположенных углей; для того, чтобы дуга горела только на конце углей, один их углей окружался лёгкоплавкой фарфоровой трубкой или трубкой из белого стекла, как это делалось для имитации свечей в газовом освещении. При обгорании углей эта трубка постепенно расплавлялась. В связи с тем, что угли при питании их постоянным током сгорали неодинаково, положительный уголь делался толще отрицательного. Более толстый положительный электрод электрических свечей давал довольно заметную тень. Дальнейшие исследования показали, что равномерное сгорание углей одинакового сечения возможно только при использовании переменного тока для питания свечи.

Свеча устанавливалась в специальный подсвечник, состоявший из двух медных деталей, изолированных одна от другой и смонтированных на подставке из шифера или какого-либо другого материала. Медные детали представляли собой пружинный зажим, в который вставлялись оба угля для создания хорошего контакта. К этому зажиму подходили два провода от источника тока.

Само название свечи было дано этому источнику света вследствие того, что внешне свечу напоминала фарфоровая оболочка угля и пламя находилось не между электродами, а на конце белого стержня, как это было, например, у стеариновой свечи.

К февралю 1877 года Яблочков несколько усовершенствовал свечу. Он отказался от трубки из фарфора. Свеча теперь состояла из двух угольных блоков 120 мм длиной и 4 мм в диаметре, разделённых изоляционным материалом - каолином. Расстояние между углями составляло 3 мм. На верхнем крае углей устанавливался замыкатель («коломбина») в виде обугленной пластинки, прикреплённой посредством бумажной полоски . При подключении свечи к источнику переменного тока , предохранительная перемычка на конце сгорала, поджигая дугу. Свеча горела ¾ часа; по истечении этого времени приходилось вставлять в фонарь новую свечу. Сила света свечей составляла 20-25 карселей, то есть 192-240 кандела. Эти свечи использовались для освещения магазина Лувр.

На основе опыта по освещению магазина Лувр Яблочкову удалось внести в конструкцию свечи существенные изменения: каолин был заменён гипсом, благодаря чему возрос световой поток; длина угольных блоков доведена до 275 мм, из которых 225 мм было полезной; благодаря улучшению материала, из которого делались свечи, срок их службы был удвоен и доведён до полутора часов. Нижние края углей позднее стали металлизировать (то есть покрывать красной медью), для того, чтобы получить более хороший контакт при вставлении свечи в пружинный держатель. Эта конструкция свечи была рассчитана на массовое распространение.

Свечи закрывались глазурированными шарами из стекла. Диаметр шара обычно был равен 400 мм, вверху его делалось отверстие. Фонари были высотой до 700 мм, в их цоколе имелись дверцы для вентиляции.

Для увеличения времени освещения была разработана конструкция фонаря на 4 свечи, в котором помещалось крестообразно четыре держателя на общей подставке. Через определённый промежуток времени ламповщики обходили фонари и переводили ток особыми коммутаторами со сгоревшей свечи на новую. Впоследствии были придуманы так называемые автоматические подсвечники. Один из них представлял собой конструкцию из нескольких свечей, в каждую из которых упирался металлический стержень. Этот стержень поддерживал рычажок, на котором находился контакт. Когда свеча догорала до определённого уровня, упор уничтожался, контакт падал и ток переходил на другую свечу. Другое устройство было сделано иначе: в середину подсвечника помещался стержень, от которого натягивалась тонкая шёлковая нить; когда свеча догорала, нить загоралась, поддерживаемый ей рычажок падал и переносил ток на другую свечу. Кроме того, для перевода тока под подсвечником устраивался ртутный коммутатор; он состоял из коробки с несколькими отверстиям, в которую была налита ртуть. На оси помещался металлический круг и несколько стержней; в отделение с ртутью входил только один стержень. При таком устройстве, когда свеча горела, рычажок был притянут, а стержень находился в ртути; как только свеча догорала или случайно потухала, рычажок падал, стержень выходил из отделения с ртутью, а новый входил в другое отделение и ток передавался на следующую свечу.

Прочие усовершенствования

Павел Яблочков постоянно вносил усовершенствования в конструкцию лампы. Помимо основного французского патента № 112024 он получил к нему ещё шесть привилегий.

Первая дополнительная привилегия, датированная 16 сентября 1876 года, закрепила за Яблочковым приоритет в замене каолина другими силикатообразными веществами с присадками солей металлов для окраски пламени. Характер изоляционного материала, который помещался в свече между электродами имел большое значение. Остановившись сначала на каолине, Павел Николаевич продолжал изыскивать другие подходящие материалы. Кроме того Яблочков начал использовать эту изоляционную прослойку, для того чтобы окрашивать пламя дуги в разные цвета. Одновременно Яблочков запатентовал изготовление свечей нескольких калибров по силе света. В результате длительной работы ему удалось добиться однородности качества углей и выпускать их в довольно большом ассортименте силой света от 8 до 600 карселей, то есть от 77 до 5766 кандел.

Во второй своей дополнительной привилегии от 2 октября 1876 года Яблочков предусмотрел применение в качестве изолирующей прослойки таких смесей, которые под влиянием нагрева могут превращаться в некоторое небольшое количество полужидкой текучей массы и образовывать дугу в том месте между электродами, где эта капля будет касаться электродов; дуга при этом может перемещаться при движении полужидкой капли. Такие вещества способны увеличивать длину дуги при том же напряжении тока, что было использовано Яблочковым для изготовления свечей на разные силы света.

Третье дополнение к основному французскому патенту № 112024, взятое 23 октября 1876 года, предусматривало, что изоляционная масса делается не из твёрдых кусков, а из порошка, причём угли окружаются оболочкой, наружная часть которой делается из асбестового картона. Угли вокруг оболочки окружены порошком, оболочки углей друг от друга также отделяются порошком.

По четвёртому дополнению от 21 ноября 1876 года угли заменяются трубками, содержащими ту же массу, которая применяется для изоляции. В шестом, последнем, дополнении к патенту № 112024 от 11 марта 1879 года Яблочков снова вернулся к массе, которая должна обеспечивать новое зажигание после потухания свечи. Для осуществления этого масса должна быть достаточно проводящей для возобновления зажигания. Это было достигнуто прибавлением к массе до 10 % цинкового порошка; саму же массу Павел Николаевич сделал из смеси гипса с сернокислым барием.

Патенты

Помимо французского патента № 112024, патенты на электрическую свечу П. Н. Яблочков получил и в других странах:

  • в Англии - на «усовершенствование электрического света», выданный 9 марта 1877 года за № 3552 в качестве предварительной спецификации, и на «усовершенствование в электрических лампах и в устройствах для разделения и распределения электрического света, к ним относящихся», выданный 20 июля 1877 года за № 494.
  • в Германии - на электрическую лампу, выданный 14 августа 1877 года за № 663.
  • в России - на «электрическую лампу и способ распределения в оной электрического тока», выданный 6 (12) апреля 1878 года.
  • в США - на электрическую лампу, выданный 15 ноября 1881 года.

Недостатки свечи Яблочкова

Недостатки, присущие свечам Яблочкова, можно классифицировать следующим образом:

  1. Короткий срок службы свечи; здесь Яблочков достиг возможного технического предела - полтора часа. Увеличивать длину углей было далее невозможно, так как это приводило бы к большему увеличению диаметра колпаков.
  2. Потухание одной лампы связано с потуханием всех последовательно включенных свечей.
  3. Потухшую свечу вновь зажечь было невозможно. Практического разрешения этого вопроса не было найдено.
  4. Для переключения перегоревших ламп требовалось участие обслуживающего персонала. Этот недостаток также практически не был устранён.

Примечания

Литература

  • Капцов Н. А. Павел Николаевич Яблочков, 1847-1894: Его жизнь и деятельность. - М.: Гостехиздат, 1957. - 96 с. - (Люди русской науки).
  • Капцов Н. А. Яблочков - слава и гордость русской электротехники (1847-1894). - М: Военное изд-во Министерства вооружённых сил СССР, 1948.
  • П. Н. Яблочков. К 50-летию со дня смерти (1894-1944) / Под ред. проф. Л. Д. Белькинда. - М., Л.: Государственное энергетическое изд-во, 1944. - С. 23-31
  • Павел Николаевич Яблочков. Труды. Документы. Материалы / отв. ред. чл.-корр. АН СССР М. А. Шателен, сост. проф. Л. Д. Белькинд. - М.: Изд-во Академии наук СССР, 1954. - С. 67

Отвечая на вопрос, кто изобрел электрическую лампу, современник скорее всего назовет Эдисона. Между тем в конце 1870-х годов в Европе на слуху было другое имя — Павел Яблочков. Лампы русского инженера первыми стали применяться в Европе для освещения улиц, а французы даже прозвали новый тип искусственного освещения« русским светом» — la lumiere russe.

Свет во всем свете Конец 1870-х годов становится эпохой свечи Яблочкова. Изобретенный нашим инженером «русский свет» в это время можно встретить в крупных городах во многих уголках мира

Николай Корзинов

Лампочка накаливания кажется невероятно простым устройством. Однако ее появлению предшествовали десятки разнообразных прототипов, причем некоторые из них имели весьма изощренную конструкцию. Например, в середине XIX века были распространены дуговые лампы с хитрыми регуляторами. Поэтому, когда Павел Яблочков изобрел лампочку без регулятора, все были поражены простотой ее конструкции и прочили ей великое будущее. Но триумф был недолгим.


Впервые идея о том, что для освещения домов и улиц можно использовать электричество, пришла в голову экспериментаторам еще в самом начале XIX века. Первый известный истории случай освещения помещения с помощью электричества произошел в Санкт-Петербурге в 1802 году. Профессор физики Василий Петров однажды провел такой опыт. К электрической батарее он подсоединил две угольные палочки. Одну соединил проволокой с «плюсом», другую — с «минусом». Когда Петров сблизил концы палочек, ток прошел сквозь воздушный промежуток с одной на другую и возникшая огненная дуга на мгновение осветила лабораторию. Позже, описывая это явление в своем отчете, профессор Петров не забыл упомянуть о световом эффекте: от возникающего между углями белого света, писал он, «темный покой довольно ясно освещен быть может».


Конец 1870-х годов становится эпохой свечи Яблочкова. Изобретенный нашим инженером «русский свет» в это время можно встретить в крупных городах во многих уголках света. Уже в 1877 году главные улицы Парижа освещают лампы Яблочкова, к концу этого года они появляются и на другом конце пролива Ла-Манш — в Лондоне. Эти два мегаполиса традиционно боролись друг с другом за приоритет в деле освоения новых технических решений. Затем русский свет добрался и до других столиц Западной Европы. А к концу 1878 года он появился уже на другой стороне Атлантики — им освещали магазины Филадельфии (США), площади Рио-де-Жанейро и городов Мексики. В это же время «русский свет» добрался и до исторической родины — лампы Яблочкова начали применять в Санкт-Петербурге.

За рубежом схожий эксперимент с образованием вольтовой дуги провел английский ученый Гемфри Дэви, и именно его работы подстегнули других присмотреться к возможностям электрического освещения. Оно, впрочем, в тот момент никого всерьез не интересовало — человечество только-только открыло для себя газовое освещение, которое имело ряд преимуществ перед привычными для той поры масляными фонарями. Еще долго после того, как лондонская Пэлл-Мэлл стала первой в мире улицей, где установили газовые фонари, люди не могли нарадоваться новому способу освещения. А в середине XIX века у газового освещения появилась прекрасная альтернатива — керосиновые фонари. Тем временем опыты с электричеством продолжались.

В 1844 году французский физик Жан Бернар Леон Фуко (тот самый, что впоследствии прославился своим опытом с маятником) сделал электроды своей дуговой лампы не из древесного угля, а из твердого кокса. Это увеличило продолжительность горения дуги, а за счет того что Фуко использовал часовой механизм для сближения электродов по мере их сгорания, ему удалось разработать, по сути дела, первую не слишком быстро прогорающую электрическую лампу. В 1848 году он даже применил ее для освещения одной из площадей Парижа, но на тот момент к его разработке отнеслись как к курьезу. Лампа работала недолго, а питалась она не от сети, а от тяжелой электрической батареи и явно не составляла серьезной конкуренции газовым фонарям.


Прозрение Яблочкова

Между тем в свет выходили все новые электрические лампы. Инженеры экспериментировали с материалом электродов, разрабатывали все более совершенные механизмы их сближения, проектировали генераторы для питания своих ламп. Но, несмотря на все усилия разработчиков, электрические лампы оставались слишком дороги и городские власти не спешили отказываться от газовых и керосиновых фонарей в пользу электричества. Весной 1874 году Павел Яблочков разработал прожектор с дуговой лампой для правительственного паровоза, направлявшегося из Москвы в Крым. В течение всей поездки сам разработчик, стоя на передней площадке паровоза, менял угольки, настраивал регулятор и в итоге пришел к выводу, что у дуговой лампы такой системы нет будущего. Он занялся упрощением регулятора лампы, в чем, как выяснилось позже, не было необходимости. Регулятор был просто не нужен! Сделать это открытие Яблочкову помог случай.


Однажды, когда он проводил опыт по электролизу раствора поваренной соли, параллельно расположенные угли, погруженные в электролитическую ванну, случайно коснулись друг друга и между ними вспыхнула электрическая дуга. Благодаря этому эпизоду инженер пришел к замечательной идее: если расположить электроды не друг против друга, а параллельно, можно обойтись без регулятора межэлектродного расстояния. Реализация простой идеи потребовала изобретательности, но Яблочков справился с задачей — стержни-электроды он разделил прокладкой из специальной глины, которая скрепляла угли между собой и изолировала их друг от друга.

Хроника городского освещения

Сегодняшним жителям крупных городов может показаться, что фонари были всегда. Однако в средневековые времена даже такие крупные по тем временам города, как Лондон и Париж, погружались во тьму с закатом солнца. Жизнь на улицах замирала, а погулять по городу ночью решались только самые бесстрашные. Так продолжалось до конца 17-го — начала 18-го века.
Масляные фонари. Двигателем прогресса стал французский король Людовик XIV, который в 1667 году принял решения освещать главные улицы Парижа масляными фонарями. Почти в тоже время фонари появляются в Амстердаме. В 1718 году первые фонари устанавливаются в «городе Петра», а при Анне Иоанновне начала освещаться Москва. Работали фонари от конопляного масла, которое было съедобным и поэтому активно расхищалось. Фонарщикам, кстати, приходилось не только доливать в жестяной сосуд фонаря масло, но и следить за фитилем, иначе лампа начинала коптить.
Газовое освещение. В 1807 году на лондонской Пэлл-Мэлл появились первые газовые фонари, и затем газом стали освещаться многие европейские столицы. Спустя три десятилетия после Лондона газовое освещение появилось и в Санкт-Петербурге, а в 1868 году уличные фонари, работающие на газе, появились и в Москве. Первые газовые фонари светили намного менее ярко, чем усовершенствованные модели. Изобретение калильной сети позволило в несколько раз увеличить силу света газовых и керосиновых фонарей.
Керосиновое освещение. Любопытно, что в Москву керосиновое освещение пришло раньше, чем газовое. В отличие от большинства городов мира. Фонари с недорогим по тем временам горючим молниеносно распространились и обрели широкую популярность. Они пришли на смену масляным фонарям, которые к середине 19-го века уже сильно надоели горожанам. «Далее, ради Бога, далее от фонаря! — писал Гоголь. — И скорее, сколько можно скорее проходите мимо. Это счастие еще, если отделаетесь тем, что он зальет щегольский сюртук ваш вонючим маслом».
Электрическое освещение. По‑настоящему популярным электрическое освещение становится после того, как Эдисон разрабатывает полную цепочку — от электростанций до конечных потребителей. Однако применять лампы для освещения улиц начинают еще в середине 19-го века. Сперва используют дуговые лампы с регуляторами, затем Яблочков изобретает свою лампу — и она сразу находит широкую популярность, а затем дуговые лампы стремительно вытесняются лампами накаливания. Но яркие дуговые лампы еще долгое время используются для освещения улиц: например, в 1910 году в Москве действовало 440 дуговых электрических фонарей и шесть опытных с лампами накаливания. Последние керосиновые фонари в Москве заменили электрическими в 1926 году, газовые просуществовали дольше — до 1932 года.

В 1875 году, когда Яблочков работал над своим изобретением, дела его мастерской в Москве шли неважно, и ученый перебрался в Париж. Здесь российским специалистом заинтересовался крупный ученый и владелец заводов по производству физических приборов Луи Бреге и предложил ему место в своей фирме. Возможно, именно это событие и предопределило будущий триумф изобретателя. 23 марта 1876 года Яблочков получил французский патент на изобретенную им лампу, а через месяц продемонстрировал свое изобретение в Лондоне. Презентация лампы проходила на «ура», и вскоре европейские газеты начали пестреть заголовками: «Изобретение инженера Яблочкова — новая эра в технике», «Россия — родина электричества» и другими в том же духе. Вскоре свечи Яблочкова появились в продаже и начали расходиться в громадных для того времени количествах. Имя русского инженера стало хорошо известным в Старом Свете, но время триумфа продлилось недолго. Вскоре появилась лампа накаливания и сразу же проявила себя с самой лучшей стороны.

Движение Эдисона

Эксперименты по разработке лампы накаливания в XIX веке проводились параллельно с проектированием дуговой лампы. Некоторые ученые, как Яблочков, делали ставку на более яркую дуговую лампу, другие верили, что будущее за лампой накаливания.


Одним из первых экспериментировать с лампами накаливания начал англичанин Деларю — в 1809 году он получил свет, пропуская ток через платиновую спираль. Спустя три десятилетия более доступный способ получения света открыл бельгиец Жобар — он накаливал угольные стержни. Отставной офицер Александр Лодыгин создал лампу с несколькими угольными стержнями — при сгорании одного автоматически включался следующий. Путем постоянного усовершенствования Лодыгин поднял ресурс своих ламп с 30 минут до нескольких сотен часов! Кстати, именно он одним из первых начал откачивать воздух из баллона лампы. Но прекрасный инженер Лодыгин был неважным предпринимателем и поэтому занял весьма скромное место в истории. Все почести достались Эдисону, который приступил к разработке лампочки лишь в 1879 году. Тем не менее слава Эдисона вполне им заслужена. Опираясь на опыт других, он провел тысячи экспериментов, израсходовав на них более $100 000 — колоссальную сумму по тем временам, и добился своего — смог создать первую в мире лампочку с продолжительным сроком службы (800−1000 часов), пригодную для массового производства. Причем изобретатель подошел к делу комплексно: не зацикливаясь только на своей лампе, он во всех деталях разработал системы электрического освещения и централизованного электроснабжения от сети до конкретного потребителя. Это и сделало его лампочки столь популярными.

Сам же «русский свет» был в техническом развитии планеты всего лишь яркой вспышкой. Через несколько лет после того, как лампы Яблочкова установили во многих столицах мира и даже дворцах мировых владык, их заменили обычными лампочками накаливания, а сам изобретатель умер в Саратове безвестным и небогатым. Долгое время казалось, что яркие лампы Яблочкова никому не нужны. Однако в какой-то момент яркие дуговые лампы снова оказались востребованы и были реинкарнированы на новом технологическом уровне — в виде газоразрядных ламп. Ксеноновые лампы, которые применяются на современных автомобилях, как раз из этого семейства. Более яркие, чем галогенные лампы накаливания, они являются отголоском той поры, когда «русский свет» произвел фурор в Европе и стал для многих городов входным билетом в мир электрического будущего…


Close