2731. Укажите одно из положений клеточной теории
А) Единицей строения, жизнедеятельности и развития организмов является клетка
Б) Половая клетка содержит по одному аллелю каждого гена
В) Из зиготы формируется многоклеточный зародыш
Г) В ядрах эукариотических клеток гены расположены в хромосомах линейно

Конспект

2732. Сколько аутосом содержится в сперматозоиде у человека?
А) 22
Б) 2
В) 23
Г) 4

Конспект

2733. Организмы, клетки которых имеют обособленное ядро, - это
А) эукариоты
Б) бактерии
В) прокариоты
Г) вирусы

Конспект

2734. Партеногенез - это разновидность полового размножения, при котором новый организм развивается из
А) диплоидной зиготы
Б) первых бластомеров
В) гаплоидной споры
Г) неоплодотворённой яйцеклетки

Конспект

2735. Кожица плодов томатов может быть гладкой и опушённой (a). Выберите
генотипы родительских растений, у которых доминантные фенотипы.
А) Аа, аа
Б) Аа, Аа
В) А, а
Г) АА, аа

Конспект

2736. Наследование гена гемофилии, расположенного в Х-хромосоме у человека, является примером
А) проявления результата кроссинговера
Б) сцепленного с полом наследования
В) независимого наследования признаков
Г) промежуточного наследования признаков

2737. Появление разных аллелей одного гена происходит в результате
А) непрямого деления клетки
Б) модификационной изменчивости
В) мутационного процесса
Г) комбинативной изменчивости

2738. Почему бактерии выделяют в самостоятельное царство органического мира?
А) в неблагоприятных условиях размножаются митозом
Б) отсутствие ядра в клетке
В) размножаются спорами
Г) в основном гетеротрофные организмы

Конспект

2739. Рост стебля древесного растения в толщину происходит за счёт деления и роста клеток
А) камбия
Б) древесины
В) пробки
Г) луба

2740. Покрытосеменные - более высокоорганизованные растения, чем голосеменные, так как образуют
А) зиготу при слиянии гамет
Б) семена из семязачатков
В) плоды с семенами
Г) зародыш, защищённый семенной кожурой

© Д.В.Поздняков, 2009-2018


Adblock detector

Органоиды специального назначения содержатся во многих растительных и животных клетках. К ним относятся органоиды движения (миофибриллы, реснички, жгутики, стрекательные капсулы и др.), опорные структуры (тонофибриллы), органоиды, воспринимающие внешние раздражения (например, фоторецепторы, статорецепторы и фонорецепторы), нейрофибриллы, а также структуры клеточной поверхности, связанные с всасыванием и перевариванием пищи (микроворсинки, кутикула и др. виды.)

Реснички и жгутики — это выступающие из клетки органеллы, имеющие диаметр около 0,25 мкм и содержащие в середине пучок параллельно расположенных микротрубочек. Главная функция этих органелл состоит в передвижении самих клеток или в продвижении вдоль клеток окружающей их жидкости и частиц. Реснички и жгутики имеются на поверхности клеток многих типов и встречаются у большинства животных и некоторых растений. У человека множество ресничек имеют клетки эпителия бронхов (до 10#9 на 1 см2). Они заставляют постоянно двигаться вверх слой слизи с частицами пыли и остатками отмерших клеток. С помощью ресничек клеток яйцевода яйцеклетки продвигаются по нему. Жгутики отличаются от ресничек лишь длиной. Так, сперматозоиды млекопитающих имеют по одному жгутику длиной до 100 мкм.

Организмы, клетки которых не имеют ограниченных мембраной ядер.

Обычно реснички короче жгутиков более чем в 10 раз. Тысячи ресничек одной клетки движутся координированно, образуя на поверхности плазмалеммы бегущие волны Каждая ресничка работает подобно хлысту: удар вперед, при котором ресничка полностью выпрямляется и передает в окружающую жидкость максимальное усилие, проталкивая ее, а затем, изгибаясь, чтобы уменьшить сопротивление среды, она возвращается в исходное положение). На всю длину реснички или жгутика тянутся микротрубочки — полые белковые цилиндры с внешним диаметром 25 нм. Микротрубочки, как и микрофиламенты, полярны, они удлиняются с одного конца вследствие полимеризации глобулярного белка. В ресничках и жгутиках они располагаются по системе 9+2; девять двойных микротрубочек (дублетов) образуют стенку цилиндра, в центре которого находятся две одиночные микротрубочки ю.Дублеты способны скользить друг относительно друга, что заставляет ресничку или жгутик изгибаться.

Микротрубочки

Микротрубочки - белковые внутриклеточные структуры, входящие в состав цитоскелета.Микротрубочки представляют собой полые внутри цилиндры диаметром 25 нм. Длина их может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Их стенка образована димерами тубулина. Микротрубочки, подобно актиновым микрофиламентам, полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокинез и везикулярный транспорт.Содержание [показать]

Строение Микротрубочки - это структуры, в которых 13 тубулиновых α-/β-гетеродимеров уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний - около 15.Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противоположного конца - минус-конца - тубулиновые единицы отщепляются.

Функция Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными. Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены. Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые - связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Помимо транспортной функции, микротрубочки формируют центральную структуру ресничек и жгутиков - аксонему. Типичная аксонема содержит 9 пар объединённых микротрубочек по периферии и две полных микротрубочки в центре. Из микротрубочек состоят также центриоли и веретено деления, обеспечивающее расхождение хромосом к полюсам клетки при митозе и мейозе. Микротрубочки участвуют в поддержании формы клетки и расположения органоидов (в частности, аппарата Гольджи) в цитоплазме клеток.

ОРГАНОИДЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

Микротрубочки – длинные тонкие полые цилиндры диаметром 25 нм. стенки микротрубочек состоят из белков 1.опорная функция образуют внутренний каркас помогающий клеткам сохранять форму 2.двигательная-входят в состав ресничек и жгутиков
Мвыросикронити – тонкие структуры состоящие из тысяч молекул белков соединенных друг с другом Образуют опорно-двигательную систему называемую цитоскелетом. способствует току цитоплазмы в клетках
Реснички – многочисленные цитоплазматические выросты на поверхности мембраны образованы микротрубочками покрытыми мембраной Обеспечивают передвижение некоторых одноклеточных организмов и ток жидкости в организмах удаление частичек пыли
Жгутики –- поверхностная структура, присутствующая у многих прокариотических и эукариотических клеток и служащая для их движения в жидкой среде или по поверхности твёрдых сред. Жгутики прокариот и эукариот резко различаются: бактериальный жгутик имеет толщину 10-20 нм и длину 3-15 мкм, он пассивно вращается расположенным в мембране мотором; жгутики же эукариот толщиной до 200 нм и длиной до 200 мкм, они могут самостоятельно изгибаться по всей длине. У эукариот часто также присутствуют реснички, идентичные по своему строению жгутику, но более короткие (до 10 мкм). Служат для движения одноклеточным организмам сперматозоидам и зооспорам

Вопрос 17.

Включения – необязательные компоненты клетки, возникающие и исчезающие в зависимости от метаболического состояния клетки.

Это скопление веществ в клетке.

Классификация:

Трофические (нейтральные липиды, полисахариды, белки)

Секреторные (вакуоли, выводящие вещества из клетки)

Экскреторные (продукты метаболизма)

Пигментные – экзогенные (каротин, пыль, красители)

— эндогенные (гемоглобин, меланин)

Читайте также:

A.3 Применение модели нагрузки специального транспортного средства для проезжей части
АННОТАЦИИ ЛАБОРАТОРНЫХ РАБОТ СПЕЦИАЛЬНОГО ПРАКТИКУМА
Изучение понятия, классификации, назначения, особенностей загрузки операционной системы (ОС) компьютера
КОНДИТЕРСКИЕ ИЗДЕЛИЯ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ
Лишение специального, воинского или почетного звания, классного чина и государственных наград
Назначения и сущность процессов происходящих при тепловой обработке материалов.
Назначения схем этапного наращивания мощности линии
Нанести обозначения шероховатости поверхностей, исходя из технологии изготовления детали или ее назначения.
Не давайте лекарств без назначения врача и не продолжайте лечения
Нормативная база организации технического учета и технической инвентаризации (паспортизации), регистрации и учета объектов нежилого назначения.

Читайте также:

Эукариоты – организмы, клетки которых имеют ядро, окруженное мембранной оболочкой.

Особенности строения:

  1. Форма клеток разнообразная, размеры колеблются в пределах от 5 до 100 мкм.
  2. Клетки имеют сходный химический состав и обмен веществ.
  3. Клетки разделены системой мембран на компартменты.
  4. Генетический материал сосредоточен преимущественно в хромосомах, которые имеют сложное строение и образованы нитями ДНК и гистоновыми белковыми молекулами.
  5. В цитоплазме находятся мембранные органоиды, центриоли.
  6. Деление клеток митотическое.

Ядро – обязательный структурный компонент каждой эукариотической клетки, содержащий генетический материал. В животных клетках наследственная информация хранится в ядре и митохондриях . В растительных клетках — в ядре , митохондриях и пластидах. Ядро состоит из:

1. Ядерная оболочка;

2. Кариоплазма;

3. Хроматин;

4. Ядрышко.

Форма ядра зависит от формы самой клетки и от функций, которые она выполняет.

Размеры ядра, также в основном, зависят от размеров клетки.

Ядерно-цитоплазматический индекс – соотношение объемов ядра и цитоплазмы. Изменение этого соотношения есть одной из причин клеточного деления или нарушения обмена веществ.

Ядерная оболочка интерфазного ядра состоит из двух элементарных мембран (наружной и внутренней); между ними находится перинуклеарное пространство, которое через каналы эндоплазматического ретикулума связано с разными участками цитоплазмы. Обе ядерные мембраны пронизаны порами , через которые осуществляется избирательный обмен веществ между ядром и цитоплазмой. Изнутри ядерная оболочка покрыта белковой сеткой – ядерной ламиной, что обуславливает форму и объем ядра. К ядерной ламине теломерными участками присоединяются нити хроматина . Микрофилименты образуют внутреннюю основу ядра.

Сборник идеальных эссе по обществознанию

Внутренний «скелет» ядра имеет большое значение для обеспечения упорядоченного течения основных процессов транскрипции, репликации, процессинга. Снаружи ядро также покрыто микрофиламентами , которые являются элементами цитоскелета клетки . Наружная ядерная мембрана имеет на своей поверхности рибосомы и связана с мембранами эндоплазматического ретикулума . Ядерная оболочка обладает избирательной проницаемостью . Потоки веществ регулируются специфическими особенностями белков мембран и ядерных пор (от 1000 до 10000).

Основные функции ядерной оболочки.

1. Образование компартмента клетки, где сосредоточен генетически материал и созданы условия для его сохранения и удвоения.

2. Отделение содержимого ядра от цитоплазмы.

3. Поддержание формы и объема ядра.

4. Регуляция потоков веществ (из ядра через поры в цитоплазму поступают различные виды РНК и субъединицы рибосом, а в середину ядра переносятся необходимые белки, вода, ионы).

Кариоплазма – однородная бесструктурная масса, заполняющая пространство между хроматином и ядрышками. Она содержит воду/ 75-80%/, белки, нуклеотиды, аминокислоты, АТФ, различные виды РНК, субчастицы рибосом, промежуточные продукты обмена веществ и осуществляет взаимосвязь структур ядра и цитоплазмы.

Хроматин

Генетический материал в интерфазном ядре находится в виде

переплетающихся хроматиновых нитей. Это – комплекс ДНК и белков (дезоксирибонуклеопротеид- ДНП) . В процессе митоза, спирализуясь, хроматин образует хорошо видимые интенсивно окрашивающиеся структуры – ХРОМОСОМЫ.

Ядрышки (одно или несколько) – гранулярные, округлые, сильно окрашиваемые структуры, не имеющие мембраны. Ядрышки состоят из белков, РНК, липидов и ферментов. Содержание ДНК не более 15% и находится преимущественно в центре его.

Ядрышки фрагментируются в начале деления клетки и восстанавливаются после его окончания. В ядрышках выделяют 3 участка :

1. Фибриллярный;

2. Гранулярный;

3. Слабоокрашенный .

— Фибриллярный участок ядрышка состоит из нитей РНК. Это место активного синтеза рибосомной РНК на рРНК – генах вдоль молекулы ДНК деконденсированного хроматина.

— Гранулярный участок состоит из частиц РНК, сходных с рибосомами цитоплазмы. Это место объединения РНК и рибосомальных белков и образования зрелых малых и больших субъединиц рибосом.

Слабоокрашенный участок ядрышка содержит ДНК (не активную), которая не транскрибируется.

Образование ядрышек связано со вторичными перетяжками метафазных хромосом (ядрышковые организаторы), в области которых локализованы гены, кодирующие синтез р-РНК. В клетках человека эти функции выполняют хромосомы №13, 14, 15, 21, 22 которые имеют сателлиты или спутники.

Основные функции ядрышек :

  1. Синтез рибосомной РНК.
  2. Образование субъединиц рибосом.

ФУНКЦИИ ЯДРА:

1. Хранение и передача наследственной информации;

2. Регуляция всех процессов жизнедеятельности клетки;

3. Репарация ДНК;

4. Синтез всех видов РНК;

5. Образование рибосом;

6. Реализация наследственной информации путем регуляции синтеза белков.

ХРОМОСОМЫ.

Хромосомы – нитевидные структуры, хорошо видимые в световой микроскоп только в процессе деления клеток, образуются из хроматина в процессе его конденсации. В зависимости от степени конденсации хроматин подразделяется на:

1. Гетерохроматин – сильно спирализованный и генетическинеактивный, выявляется в виде сильно окрашенных темных участков ядра.

2. Эухроматин – малоконденсированный , генетически активный,выявляется в виде светлых участков ядра.

Химический состав хромосом :

1. ДНК – 40%

2. Основные или гистоновые белки – 40%

3. Негистоновые (кислые или нейтральные) – 20%

4. Следы РНК, липидов, полисахаридов, ионы металлов.

Эукариоты - это наиболее прогрессивно устроенные организмы. В нашей статье мы рассмотрим, кто из представителей живой природы относится к этой группе и какие черты организации позволили занять им господствующее положение в органическом мире.

Кто такие эукариоты

Согласно определению понятия, эукариоты - это организмы, клетки которых содержат оформленное ядро. К ним относятся следующие царства: Растения, Животные, Грибы. Причем не имеет значения, насколько сложно устроен их организм. Микроскопическая амеба, колонии вольвокса, - все они эукариоты.

Хотя клетки настоящих тканей иногда могут быть лишены ядра. К примеру, его нет в эритроцитах. Вместо этого данная клетка крови содержит гемоглобин, переносящий кислород и углекислый газ. Подобные клетки содержат ядро только на первых этапах своего развития. Потом данная органелла разрушается, а вместе с этим и теряется способность всей структуры к делению. Поэтому, выполнив свои функции, подобные клетки погибают.

Строение эукариотов

В клетках всех эукариотов есть ядро. Причем иногда даже не одно. Эта двумембранная органелла содержит в своем матриксе генетическую информацию, зашифрованную в виде молекул ДНК. Ядро состоит из поверхностного аппарата, который обеспечивает транспорт веществ, и матрикса - его внутренней среды. Основная функция данной структуры - хранение наследственной информации и ее передача дочерним клеткам, образующимся в результате деления.

Внутренняя среда ядра представлена несколькими составляющими. Прежде всего это кариоплазма. В ней находятся ядрышки и нити хроматина. Последние состоят из белков и нуклеиновых кислот. Именно при их спирализации формируются хромосомы. Они непосредственно являются носителями генетической информации. Эукариоты - это организмы, у которых в некоторых случаях могут формироваться ядра двух видов: вегетативные и генеративные. Яркий пример этому - инфузория. Ее генеративные ядра осуществляют сохранность и передачу генотипа, а вегетативные - регуляцию

Основные отличия про- и эукариотов

Прокариоты не имеют оформленного ядра. К этой группе организмов относится единственное - Бактерии. Но такая черта строения вовсе не означает, что в клетках данных организмов отсутствуют носители генетической информации. Бактерии содержат кольцевые молекулы ДНК - плазмиды. Однако расположены они в виде скоплений в определенном месте цитоплазмы и не имеют общей оболочки. Такая структура называется нуклеоид. Есть и еще одно отличие. ДНК в клетках прокариотов не связана с белками ядра. Учеными установлено существование плазмид и в клетках эукариотов. Они находятся в некоторых полуавтономных органеллах, например, в пластидах и митохондриях.

Прогрессивные черты строения

К эукариотам относятся организмы, которые отличаются более сложными чертами строения на всех уровнях организации. Прежде всего это касается способа размножения. обеспечивает самый простой из них - надвое. Эукариоты - это организмы, которые способны и ко всем видам воспроизведения себе подобных: половому и бесполому, партеногенезу, конъюгации. Это обеспечивает обмен генетической информацией, появление и закрепление в генотипе ряда полезных признаков, а значит, и лучшую адаптацию организмов к постоянно меняющимся условиям окружающей среды. Эта особенность и позволила эукариотам занять господствующее положение в

Итак, эукариотами являются организмы, в клетках которых есть оформленное ядро. К ним относятся растения, животные и грибы. Наличие ядра является прогрессивной чертой строения, обеспечивающей высокий уровень развития и адаптации.

Бактерии – мельчайшие живые организмы, которые населяют нашу планету. Чего не имеют крошечные бактерии? Внушительного размера. Заметить их без микроскопа невозможно, но их желание жить поистине поражает. Один тот факт, что бактерии при благоприятных условиях могут сохраняться в «летаргическом сне» сотни лет, вызывает уважение. Какие же особенности строения помогают этим крошкам жить так долго?

Прокариоты выделены учеными в отдельное царство в силу того, что они имеют специфическое клеточное строение. Сюда относятся:

  • бактерии;
  • сине-зеленые водоросли;
  • риккетсии;
  • микоплазмы.

Отсутствие четко оформленных стенок ядра является главной особенностью представителей царства прокариотов. Поэтому центром генетической информации является единственная кольцевая молекула ДНК, которая прикреплена к клеточной мембране.

Чего же еще нет в клеточном строении бактерий?

  1. Ядерной оболочки.
  2. Митохондрий.
  3. Пластид.
  4. Рибосомальной ДНК.
  5. Эндоплазматического ретикулюма.
  6. Комплекса Гольджи.

Однако отсутствие всех этих составляющих не мешает вездесущим микроорганизмам находиться в центре природного обмена веществ. Они фиксируют азот, вызывают брожение, окисляют неорганические вещества.

Надежная защита

Природа позаботилась о том, чтобы обеспечить защиту малышам: снаружи бактериальная клетка окружена плотной оболочкой. Клеточная стенка свободно осуществляет обмен веществ. Она пропускает питательные вещества внутрь и выводит продукты жизнедеятельности наружу.

Оболочка определяет форму тела бактерии:

  • шаровидные кокки;
  • изогнутые вибрионы;
  • палочковидные бациллы;
  • спириллы.

Для предохранения от высыхания вокруг клеточной стенки образуется капсула, которая состоит из плотного слоя слизи. Толщина стенок капсулы может превышать диаметр бактериальной клетки в несколько раз. Плотность стенок варьируется в зависимости от условий окружающей среды, в которые попадает бактерия.

Генетический фонд в безопасности

Четко оформленного ядра, которое бы содержало ДНК, у бактерий нет. Но это не значит, что генетическая информация у микроорганизмов без ядерной оболочки имеет хаотичное расположение. Нитевидная двойная спираль ДНК уложена аккуратным клубком в центре клетки.

Молекулы ДНК содержат наследственный материал, который является центром по запуску процессов размножения микроорганизмов. А еще бактерии оснащены, как стенкой, специальной защитной системой, которая помогает отражать атаки вирусных ДНК. Противовирусная система работает на поражение чужеродной ДНК, а вот собственная при этом не повреждается.

Благодаря наследственной информации, которая записана в ДНК, происходит размножение бактерий. Размножаются микроорганизмы делением. Скорость, с которой эти крошки способны делиться, впечатляет: каждые 20 минут их количество увеличивается вдвое! В благоприятных условиях они способны образовывать целые колонии, а вот нехватка питательных веществ негативно влияет на увеличение численности бактерий.

Чем наполнена клетка

Бактериальная цитоплазма является хранилищем питательных веществ. Это густая субстанция, которая снабжена рибосомами. Под микроскопом в цитоплазме можно различить скопления органических и минеральных веществ.

В зависимости от функциональности бактерий количество клеточных рибосом может достигать десятков тысяч. Рибосомы имеют специфическую форму, стенки которой лишены какой-либо симметрии и достигают диаметра 30 нм.

Рибосомы получили своей название благодаря рибонуклеиновым кислотам (РНК). При размножении именно рибосомы воспроизводят генетическую информацию, записанную в ДНК.

Рибосомы стали центром, который руководит процессом биосинтеза белка. Благодаря биосинтезу неорганические вещества превращаются в биологически активные. Процесс проходит в 4 этапа:

  1. Транскрипция. Происходит образование рибонуклеиновых кислот из двойных нитей ДНК.
  2. Транспортировка. Созданные РНК транспортируют аминокислоты в рибосомы в качестве исходного материала для синтеза белка.
  3. Трансляция. Рибосомы сканируют информацию и строят полипептидные цепи.
  4. Формирование белка.

Ученые до сих пор не изучили детально строение и функциональность клеточных рибосом у бактерий. Их полная структура еще не известна. Дальнейшая работа в области исследования рибосом даст полную картину о том, как работает молекулярная машина по синтезу белка.

Что не предусмотрено в бактериальной клетке

В отличие от других живых организмов в строении бактериальных клеток не предусмотрены многие клеточные структуры. Но в их цитоплазме присутствуют органоиды, которые с успехом выполняют функции митохондрий или комплекса Гольджи.

Огромное количество митохондрий найдено в эукариотах. Они составляют примерно 25% всего клеточного объема. Митохондрии отвечают за выработку, хранение и распределение энергии. ДНК митохондрий представляют собой циклические молекулы и собраны в специальные кластеры.

Стенки митохондрий состоят из двух мембран:

  • наружная, имеющая гладкие стенки;
  • внутренняя, от которой вглубь отходят многочисленные кристы.

Прокариоты снабжены своеобразными батарейками, которые, подобно митохондриям, снабжают их энергией. Например, очень интересно ведут себя такие «митохондрии» в дрожжевых клетках. Для успешной жизнедеятельности им нужен углекислый газ. Поэтому в условиях, когда СО2 недостаточно, митохондрии исчезают из тканей.

Под микроскопом можно рассмотреть аппарат Гольджи, который присущ исключительно эукариотам. Впервые он был обнаружен в нервных клетках итальянским ученым Камилло Гольджи в 1898 году. Этот органоид играет роль уборщика, т. е. удаляет из клетки все продукты обмена веществ.

Аппарат Гольджи имеет дисковидную форму, которая состоит из плотных мембранных цистерн, связанных пузырьками.

Функции аппарата Гольджи достаточно разнообразны:

  • участие в секреторных процессах;
  • формирование лизосом;
  • доставка продуктов обмена веществ до клеточной стенки.

Древнейшие жители Земли убедительно доказали, что, несмотря на отсутствие многих клеточных органоидов, они достаточно жизнеспособны. Природа подарила ядерным организмам ядро, митохондрии, аппарат Гольджи, но это совершенно не означает, что маленькие бактерии уступят им свое место под солнцем.

Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток. Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды - нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина). ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами .

Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы. Плотно спирализованные части хромосом называются гетерохроматином . Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин - более деспирализованная часть хромосом. На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.

Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки - готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой , состоящей из двух мембран (внешней и внутренней). Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным .

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС). Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.

Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры . Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры - это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.


Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке (их может быть несколько) . Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы ), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой) . Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, - это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.

О каких организмах идет речь? Эти организмы состоят из одной клетки; Клетка имеет стенку; Клетки не имеют ядер; Наследственная информация сосредоточена в единственной хромосоме; Обмен веществ осуществляется в процессе ХЕМОСИНТЕЗА или ФОТОСИНТЕЗА; Появились 3,8 – 3,1 млрд. лет назад.




ПРОКАРИОТЫ (БАКТЕРИИ) 1. В клетке есть: Капсула Клеточная стенка Плазматическая мембрана Неподвижная цитоплазма Рибосомы Нуклеоид 2. В клетке нет: Ядра Многих органоидов ЭУКАРИОТЫ (растения, грибы, животные) 1. В клетке есть: ЯДРО Клеточная стенка (Р и Г) Плазматическая мембрана Подвижная цитоплазма Органоиды -эндоплазматическая сеть -митохондрии -вакуоли -пластиды -рибосомы и др.


Основные термины и понятия ЭУКАРИОТЫ – это организмы, клетки которых имеют оформленное ядро. ПРОКАРИОТЫ – это организмы, клетки которых НЕ имеют оформленного ядра. БАКТЕРИЯ – очень мелкий одноклеточный безъядерный организм. КАПСУЛА – дополнительный слой слизи на поверхности клетки бактерии.







Контроль: 1. Бактерии – одноклеточные и многоклеточ-ные растения. 2. Некоторые клетки бактерий имеют ядро. 3. Бактерии в отличие от растений не имеют клеточного строения. 4. К палочковидным бактериям относят вибрионы. 5. Бактериальная клетка содержит цитоплаз-му, рибосомы.






7. Аэроб 8. Анаэроб 9. Брожение -организм, для жизнедеятельности которого необходим кислород. -организм, для жизнедеятельности которого кислород НЕ нужен. -процесс извлечения энергии из питатель- ных веществ в бескислородной среде (энергетически маловыгоден).



Значение бактерий в ПРИРОДЕ: Принимают активное участие в круговороте веществ, изменяя органические и неоргани- ческие соединения; Обогащение кислородом атмосферы (цианобактерии); Объект питания для других организмов; Почвообразование (образование перегноя и гумуса) – почвенные бактерии; Повышение плодородия почвы (азотфикси- рующие бактерии); Вызывают заболевания растений и животных



Значение бактерий в жизни человека: ЭКОЛОГИЧЕСКОЕ 1(+). Очищение сточных вод на очистных сооружениях, переработка мусора; 2(+). Очищение вод Мирового океана от нефтяных пятен (при розливах нефти); 3(+). Образование месторождений полез- ных ископаемых (газ, нефть, сера, железо). 4(-). Порча пищевых продуктов. Меры борьбы: а) кипячение; б) высушивание; в) стерилизация; г)пастеризация; д) замораживание.






Каковы меры профилактики бактериальных заболеваний? 1. Проветривание и влажная уборка помещений; 2. Соблюдать правила личной гигиены; 3. Не употреблять немытые или просроченные продукты; 4. Правильно готовить еду; 5. Избегать беспорядочных связей; 6. Кипятить водопроводную воду, а также из неиз-вестных источников; 7. Проводить своевременную вакцинацию; 8. Уничтожать и обеззараживать больных и павших животных. Бактерия – объект исследования; Деятельность бактерий используется в производстве: 1. Лекарств – антибиотики; 2. Гормонов – инсулин; 3. Пищевых продуктов: -кисломолочные продукты, сыры; -виноделие, пивоварение; -квашение овощей; -приготовление уксуса; -силосование.


Контроль: 1. Дифтерия, столбняк, туберкулез, холера, брюшной тиф – бактериальные заболевания. 2. Кишечная палочка живет в пищеварительной системе человека. 3. Бактерии активно участвуют в круговороте веществ в природе. 4. Клубеньковые бактерии, находясь в симбиозе с бобовыми растениями, способны усваивать фосфор. 5. Грипп и ангина – болезни вызываемые бактериями. 6. Какие бактерии выполняют роль санитаров в природе? 7. Какие бактерии вызывают процесс брожения?

Close