Тема 7. Металлы и неметаллические материалы, применяемые в промышленности.

7.1. Физические и химические свойства металлов. Получение металлов. Металлические сплавы и композиты.

Из 107 известных к настоящему времени элементов 85 являются металлами. Они составляют I, II, III группы и побочные подгруппы всех групп. Кроме того, металлами являются наиболее тяжелые элементы IV, V, VI, VII групп. Следует отметить, что многие металлы обладают амфотерными свойствами и могут вести себя как неметаллы.

Особенностью строения атомов металлов является небольшое число электронов во внешнем электронном слое, не превышающее трех.

Атомы металлов имеют, как правило, большие атомные радиусы. В периодах наибольшие атомные радиусы у щелочных металлов. Они наиболее химически активны, т.е. атомы металлов легко отдают электроны и являются хорошими восстановителями, лучшие восстановители - металлы I и II групп главных подгрупп.

Физические свойства. Все металлы, за исключением ртути, - твердые! вещества с кристаллической структурой, поэтому температура плавления их выше нуля, только температура плавления ртути -39°С. Наиболее тугоплавким металлом является вольфрам, температура плавления которого 3370°С.

Наиболее твердым металлом является хром. Мягкие металлы - натрий, калий - легко режутся ножом.

Металлы более или менее пластичны (обладают ковкостью). Пластичность металлов используется при их прокате; при волочении, когда из них вытягивают проволоку; при прессовании, штамповке и т.д.

Все металлы обладают более или менее ярко выраженным блеском, который принято называть металлическим.

Цвет металлов довольно однообразен: он либо серебристо-белый (алюминий, серебро, никель), либо серебристо-серый (железо, свинец). Только золото желтого цвета, а медь - красного.

По цвету металлы условно делят на черные и цветные. К черным металлам относятся железо и его сплавы, все остальные металлы называются цветными.

Металлы характеризуются высокой электро- и теплопроводностью.

Хорошая электрическая проводимость металлов объясняется при­сутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов приобретают направленное движение от отрицательного полюса к положительному.

Металлы проявляют магнитные своиcтва. Хорошо намагничиваются железо, кобальт, никель и их сплавы. Такие металлы и сплавы называют ферромагнитными.

Все металлы нерастворимы в воде, но зато растворимы друг в друге в расплавах.

По плотности металлы разделяются на тяжелые и легкие. Тяжелыми считают те, плотность которых больше 3 г/см 3 . Самым тяжелом металлом является осмий. Наиболее легкие металлы - литий, натрий, калий - имеют плотность меньше единицы. Широкое применение в промышленности получили легкие металлы - магний и алюминий.

Химические свойства металлов

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ионы. Поэтому металлы являются восстановителями. В этом и состоит их главное и наиболее общее химическое свойство.

Металлы как восстановители вступают в реакции с различными окислителями - кислотами, солями менее активных металлов и некоторыми другими соединениями.

Соединения металлов с галогенами называются галогенидами, с серой - сульфидами, с азотом - нитридами, с фосфором - фосфидами, с углеродом - карбидами, с кремнием - силицидами, с бором - боридами, с водородом - гидридами и т.д. Многие из этих соединений нашли важное применение в новой технике. Например, бориды металлов используют в радиоэлектронике, а также в ядерной технике в качестве материалов для регулирования нейтронного излучения и защиты от него.

Взаимодействие металлов с кислотами является окислительно-восстановительным процессом. Окислителем является ион водорода, который принимает электрон от металла:

Взаимодействие металлов с водными растворами солей менее активных металлов можно иллюстрировать примером:

Zn + CuSO 4 = ZnSO 4 + Сu

В этом случае происходит отрыв электронов от атомов более активного металла (Zn) и присоединение их ионами менее активного (Сu 2+).

Активные металлы взаимодействуют с водой, которая выступает в ролиокислителя. Например: Na – e - = Na + 2

2H 2 O + 2e - = H 2 + 2OH - 1

2Na + 2H 2 O = 2Na + 2OH - + H 2

Металлы, гидроксиды которых амфотерны, как правило, взаимодействуют с растворами и кислот, и щелочей. Например:


Таким образом, отношение металлов к неметаллам, кислотам, растворам солей менее активных металлов, к воде и щелочам подтверждает их главное химическое свойство - восстановительную способность.

Металлы могут образовывать химические соединения между собой. Они имеют общее название - интерметаллические соединения, или интерметалл иды. Примером могут служить соединения некоторых металлов с сурьмой: Na 2 Sb, Ca 3 Sb 2 , NiSb, Ni 4 Sb, FeSb x (x = 0,72 ... 0,92). В них чаще всего не соблюдаются степени окисления, характерные в соединениях с неметаллами.

Химическая связь в интерметаллидах преимущественно металлическая. По внешнему виду они похожи на металлы. Твердость интерметаллидов, как правило, выше, а пластичность намного ниже, чем у образующих их металлов. Многие интерметаплиды нашли практическое применение. Например, сурьма-алюминий AlSb; сурьма-индий InSb и другие широко используют как полупроводники.

Металлы встречаются в природе как в свободном состоянии (самородные металлы), так и в виде химических соединений.

В виде самородных металлов находятся наименее активные металлы. Типичными их представителями являются золото и платина. Серебро, медь, ртуть, олово могут находиться в природе как в самородном состоянии, так и в виде соединений, все остальные металлы (стоящие в ряду стандартных электродных потенциалов до олова) - только в виде соединений с другими элементами.

Минералы и горные породы, содержащие металлы или их соединения и пригодные для промышленного получения металлов, называются рудами. Важнейшими рудами металлов являются их оксиды и соли (сульфиды, сульфаты, карбонаты и др.). Если руды содержат соединения двух или нескольких металлов, то они называются полиметаллическими (например, медно-цинковые, свинцово-серебряные и др.).

Современная металлургия получает более 75 металлов и многочисленные сплавы на их основе. В зависимости от способов получения металлов разли­чают пиро-, гидро- и электрометаллургию.

Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восста­новления, проводимых при высоких температурах. В качестве восстанови­телей применяют уголь, активные металлы, оксид углерода (II), водород, метан. Так, например, уголь и оксид углерода (II) восстанавливают медь из красной медной руды (куприта) Си 2 О:

Cu 2 O + С = 2Cu + СО

Cu 2 O + СО = 2Cu + СО 2

Если руда является сульфидом металла, ее предварительно переводят в оксид путем окислительного обжига (обжиг с доступом воздуха), например

2ZnS + ЗО 2 = 2ZnO + 2SO 2

Затем оксид металла восстанавливают углем:

ZnO + С = Zn + CO

Восстановление углем (коксом) проводят обычно в тех случаях, когда получаемые металлы совсем не образуют карбидов или образуют непрочные карбиды (соединения с углеродом); таковы железо и многие цветные металлы - медь, цинк, кадмий, германий, олово, свинец и др.

Восстановление металлов из их соединений другими металлами, химически более активными, называются металлотермией. Эти процессы протекают тоже при высоких температурах. В качестве восстановителей используют алюминий, магний, кальций, натрий, а также кремний. Если восста­новителем является алюминий, то процесс называется алюминотермией, если магний - мапнийтермией. Например:

Cr 2 O 3 +2AI = 2Cr + AI 2 O 3

TiCI 4 +2Mg = Ti + 2MgCI 2

Металлотермией обычно получают те металлы (и их сплавы), которые при восстановлении их оксидов углем образуют карбиды. Это - марганец, хром, титан, молибден, вольфрам и др.

Иногда металлы восстанавливают из оксидов водородом (водоро-дотермия). Например:

МоО 3 +ЗН 2 = Мо + ЗН 2 О

WO 3 + ЗН 2 = W + ЗН 2 О

При этом получают металлы большой чистоты.

Гидрометаллургия охватывает способы получения металлов из растворов их солей. При этом металл, входящий в состав руды, сначала переводят в раствор с помощью водных растворов подходящих реагентов, а затем извлекают из этого раствора. Так, например, при обработке разбав­ленной серной кислотой медной руды, содержащей оксид меди (II) СиО, медь переходит в раствор в виде сульфата;

CuO + H 2 SO 4 = CuSO 4 + Н 2 О

Затем медь извлекают из раствора либо электролизом, либо вытеснением с помощью порошка железа:

CuSO 4 + Fe = Сu + FeSO 4

В настоящее время гидрометаллургическим методом получают до 25% всей добываемой меди. Он имеет большое будущее, так как позволяет получать металлы, не извлекая руду на поверхность.

Этим же методом добывают золото* серебро, цинк, кадмий, молибден, уран и др. Руду, содержащую самородное золото, после измельчения обрабатывают раствором цианида калия KCN. Всё золото переходит в раствор. Из раствора его извлекают электролизом или вытеснением металлическим цинком.

Электрометаллургия охватывает способы получения металлов с помощью электролиза. Этими способами получают главным образом легкие металлы - алюминий, натрий и др. - из их расплавленных оксидов или хлоридов.

Электролиз используют также для очистки некоторых металлов.

Сплавы

Для металлов характерна способность образовывать сплавы. Само название сплав означает, что чаще всего сплавы получают смешиванием металлов в расплавленном состоянии. Сплав может состоять из двух компонентов и более, в том числе и»неметаллов. Металлы в сплавах могут растворяться друг в друге, вступать друг с другом в соединения и образовывать обычные механические смеси.

В настоящее время некоторые сплавы готовят методом порошковой металлургии. Берется смесь металлов в виде порошков, прессуется под большим давлением и спекается при высокой температуре в восстановитель­ной среде. Таким путем получают сверхтвердые сплавы.

В состав некоторых сплавов входят неметаллы, например углерод, кремний, бор и др.

В технике применяется более 5000 сплавов.

Сталь - это сплав железа с небольшим содержанием углерода (до 1,7%) и с металлургическими примесями (Мn, Si, S, Р).Специальные стали содержат до 10 различных элементов. По сравнению с чистым железом они обладают большой твердостью.

Чугун - сплав железа с углеродом (более 2%), кремнием, марганцем, фосфором и серой. По сравнению с чистым железом он очень тверд и хрупок.

В технике сплавы на основе железа, т. е. сталь, чугун, а также само железо, называются черными металлами, а все остальные металлы -цветными. Отсюда и деление металлургии, получающей металлы из руд, на черную и цветную.

Бронза - сплав меди с другими элементами, в основном с металлами. В зависимости от состава различают: оловянную бронзу (состоит из меди и олова), алюминиевую бронзу (содержит до 5... 11% алюминия), свинцовую (до 33% свинца), кремниевую (до 4% кремния) и др. Применяют для изготовления частей машин и для художественных отливок.

Латунь - сплав меди с цинком (до 30...35% цинка). Обладает высокой пластичностью. Используют для изготовления приборов, деталей машин, предметов домашнего обихода.

Баббиты - сплавы, уменьшающие трение, изготовляются на основе олова или свинца с добавками сурьмы, меди и других металлов. Применяют для заливки подшипников.

Нихром - сплав никеля (67,5%), хрома (15%), железа (16%) и марганца (1,5%) обладает большим электрическим сопротивлением и жаропрочностью, поэтому применяется для изготовления электрических нагревательных приборов.

Дуралюмин - сплав алюминия (95%), магния, меди и марганца. Очень легкий и прочный сплав. По прочности он равен стали, но в 3 раза легче ее. Применяется в самолетостроении. Легкие сплавы на основе титана сохраняют прочность и коррозионную устойчивость при повышенных температуре и давлении. Из

них изготовляют отдельные части реактивных двигателей.

7.2.Методы получения полимеров: полимеризация, поликонденсация. Свойства полимеров. Применение полимеров и олигомеров.

Полимеры, или высокомолекулярные соединения (ВМС), получили свое название из-за большой молекулярной массы, отличающей их от низкомолекулярных веществ, молекулярная масса которых лишь сравнительно редко достигает нескольких сотен. В настоящее время принято относить к ВМС вещества с молекулярной массой более 5000.

Молекулу полимерного вещества называют макромолекулой, а процесс соединения многих молекул в макромолекулу - полимеризацией или поликонденсацией, в зависимости от типа реакции, лежащей в основе процесса. Молекулу низкомолекулярного соединения, вступающего в полимеризацию, называют мономером. Вещества, которые по молекулярной массе и свойствам занимают промежуточное положение между полимерами и мономерами, называют олигомерами. Молекулярная масса олигомеров примерно от 500 до 5000. Как правило, они не обладают свойствами ВМС, но и не могут быть отнесены к низкомолекулярным соединениям. Олигомеры представляют собой молекулярно однородные вещества, они являются гомологами полимеров и по физическим свойствам настолько отличаются друг от друга, что могут быть разделены на индивидуальные химические соединения.

Олигомеры с более высокой молекулярной массой по свойствам приближаются к полимерам и не могут быть разделены на индивидуальные соединения.

Макромолекулы большинства ВМС построены из одинаковых, многократно повторяющихся групп атомов - элементарных звеньев, например, элементарным звеном макромолекулы натурального каучука является участок цепи строения

элементарное звено

Поэтому для каучука принимают суммарную формулу (С 5 Н 8) Л. Индекс n в таких формулах обозначает число элементарных звеньев, входящих в состав макромолекулы, характеризует степень полимеризации ВМС. Степень полимеризации Р связана с молекулярной массой полимера М уравнением Р=М/т, где т - молекулярная масса элементарного звена. При изучении строения макромолекулы полимера наряду с определением химического строения элементарных звеньев, порядка их чередования и пространственного расположения большое значение приобретает определение формы макромолекулы. По форме макромолекул ВМС разделяются на линейные, разветвленные, сетчатые, пространственные и др. (рис. 16).

Макромолекулы линейных полимеров представляют собой длинные цепи с очень высокой степенью асимметрии (их поперечный размер в вытянутом состоянии соответствует поперечному размеру молекулы мономера, а длина в сотни и тысячи раз превышает этот размер). К линейным полимерам относятся природные высокомолекулярные соединения (целлюлоза, белки), натуральный каучук и очень большое число синтетических полимеров.

Макромолекулы разветвленного полимера представляют собой цепи с боковыми ответвлениями. Число боковых ответвлений, а также отношение длины основной цепи к длине боковых цепей могут быть различными.

Все высокомолекулярные соединения в зависимости от происхождения подразделяют на природные, выделенные из природных материалов (часть из которых мы уже рассмотрели выше), искусственные, полученные путем химической модификации природных полимеров, и синтетические, полученные путем синтеза из низкомолекулярных соединений.

Металлы и сплавы характеризуются комплексом физических, механических, химических и технологических свойств.

Физические свойства металлов и сплавов – блеск, плотность, температура плавления, теплопроводность, теплоемкость, электропроводность, магнитные свойства, расширяемость при нагревании и фазовых превращениях.

Механические свойства металлов и сплавов – твердость, упругость, прочность, хрупкость, пластичность, вязкость, износостойкость, сопротивление усталости, ползучесть.

Химические свойства металлов и сплавов определяют их способность сопротивляться воздействию окружающей среды. При контакте с окружающей средой металлы и сплавы подвергаются коррозии, растворяются окисляются и снижают свою жаропрочность.

Технологические свойства металлов и сплавов – ковкость, свариваемость, прокаливаемость, склонность к обезуглероживанию, обрабатываемость резанием, жидкотекучесть, закаливаемость. Они характеризуют способность металлов и сплавов обрабатываться различными методами. Кроме того, они позволяют определить, насколько экономически эффективно можно изготовить изделие.

Ковкость – способность металла и сплава обрабатываться путем пластического деформирования.

Свариваемость – способность металла и сплава образовывать неразъемное соединение, свойства которого близки к свойствам основного металла (сплава).

Прокаливаемость – способность металла и сплава закаливаться на определенную глубину.

Склонность к обезуглероживанию металла и сплава – возможность выгорания углерода в поверхностных слоях изделий из сплавов и сталей при нагреве в среде, содержащей кислород и водород.

Обрабатываемость резанием – поведение металла и сплава под воздействием режущего инструмента.

Жидкотекучесть – способность расплавленного металла и сплава заполнять литейную форму.

Закаливаемость – способность металла и сплава к повышению твердости при закалке (нагрев и быстрое охлаждение).

Физические свойства металлов и сплавов важны для самолетостроения, автомобилестроения, медицины, строительства, изготовления космических аппаратов и часто являются основными характеристиками, по которым определяют возможность использования того или иного металла или сплава.

Блеск – способность поверхности металла и сплава направленно отражать световой поток.

Плотность – масса единицы объема металла или сплава. Величину, обратную плотности, называют удельным объемом.

Температура плавления – это температура, при которой металл или сплав целиком переходит в жидкое состояние.

Теплопроводность – количество теплоты, проходящее в секунду через сечение в 1см 2 , когда на расстоянии в 1см изменение температуры составляет в 1 0 С.

Теплоемкость – количество теплоты, необходимой для повышения температуры тела на 1 0 С.

Электрическая проводимость – величина, обратная электрическому сопротивлению. Под удельным электрическим сопротивлением понимают электрическое сопротивление проводника длиной 1 м и площадью поперечного сечения в 10 -6 м 2 при пропускании по нему электрического тока.

К магнитным свойствам металлов и сплавов относятся : начальная магнитная проницаемость, максимальная магнитная проницаемость, коэрцитивная сила, намагниченность насыщения, индукция насыщения, остаточная магнитная индукция, точка Кюри, петля гистерезиса.

При помещении стального образца в магнитное поле возникающая в нем магнитная индукция (b) является функцией напряженности магнитного поля (Н m).

Намагниченность (М) пропорциональна напряженности магнитного поля. Эти величины связаны между собой коэффициентом , который называется магнитной восприимчивостью стали или сплава.


(1)

Между магнитной индукцией и напряженностью магнитного поля существует аналитическая связь


(2)

где - магнитная проницаемость вакуума.

Для ферромагнетиков (сплавов, способных намагничиваться до насыщения в малых магнитных полях)

, где

- коэффициент магнитной проницаемости.

При намагничивании ферромагнитных материалов (стали, полученные соединением ферромагнетиков с парамагнетиками) намагниченность сначала плавно возрастает, потом резко повышается и постепенно достигает насыщения. При уменьшении напряженности магнитного поля Н m после намагничивания и реверсирования (изменение направления поля) его кривая изменения индукции образует замкнутую петлю. Эта петля называется петлей гистерезиса .

Основными параметрами начальной кривой и петли гистерезиса являются остаточная индукция b r , коэрцитивная сила Н с, напряженность насыщающего поля Н н и намагниченность насыщения М s . По начальной кривой определяется кривая магнитной проницаемости, в которой основными точками являются начальная магнитная проницаемость и максимальная магнитная проницаемость

.

Наибольшее значение индукции на петле гистерезиса называется индукцией насыщения .

Ферромагнетики при нагреве до определенной температуры переходят в парамагнитное состояние (в состояние с малой магнитной восприимчивостью). Эта температура называется точкой Кюри . Точка Кюри определяется в основном химическим составом сплава или стали и не зависит от давлений, напряжений и других факторов.

Все характеристики ферромагнитных материалов можно разделить на структурно нечувствительные и структурно чувствительные . К структурно нечувствительным характеристикам относятся точка Кюри, намагниченность насыщения, зависящие от произвольной намагниченности, к структурно чувствительным – магнитная проницаемость, остаточная индукция и коэрцитивная сила.

Структурно нечувствительные характеристики ферромагнитных материалов зависят в основном от химического состава и числа фаз и практически не зависят от кристаллической структуры, размера частиц зерна металла. Следовательно, измерение точки Кюри, намагниченности насыщения и т.д. необходимо для качественного фазового анализа стали и сплава.

Измерение структурно чувствительных характеристик необходимо при изучении структурных изменений в сплавах и сталях при термической или механической обработке.

Магнитная проницаемость, коэрцитивная сила и остаточная индукция изменяются при обработке сплавов и сталей. Расширение при нагревании изделий из сталей и сплавов – изменение размеров и формы зерен, характеризуется температурными коэффициентами объемного расширения и линейного расширения. Расширение при нагревании в интервале температур фазовых превращений сталей и сплавов характеризуется коэффициентом линейного расширения отдельных фаз. Внутренние (фазовые и структурные) превращения в металлах и сплавах характеризуются изменением объема, линейных размеров и коэффициента расширения. При фазовых превращениях в металлах и сплавах происходит выделение или поглощение скрытой теплоты превращения, изменяется теплоемкость изделия. Поэтому при изменении структуры металла или сплава, нагреваемого или охлаждаемого с постоянной скоростью, могут появиться отклонения от нормальной кривизны на кривых изменения температуры по времени. По этим кривым, называемым термическими кривыми, определяют температуру (температурный интервал) превращения.

Свойства металлов.

1.Основные свойства металлов.

Свойства металлов делятся на физические, химические, механические и технологические.

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, расширяемость при нагревании.

К химическим – окисляемость, растворимость и коррозионная стойкость.

К механическим – прочность, твердость, упругость, вязкость, пластичность.

К технологическим – прокаливаемость, жидкотекучесть, ковкость, свариемость, обрабатываемость резанием.

1. Физические и химические свойства.

Цвет . Металлы непрозрачны, т.е. не пропускают сквозь себя свет, и в этом отраженном свете каждый металл имеет свой особенный оттенок – цвет.

Из технических металлов окрашенными являются только медь (красная) и ее сплавы. Цвет остальных металлов колеблется от серо- стального до серебристо – белого. Тончайшие пленки окислов на поверхности металлических изделий придают им дополнительные окраски.

Удельный вес. Вес одного кубического сантиметра вещества, выраженный в граммах, называется удельным весом.

По величине удельного веса различают легкие металлы и тяжелые металлы. Из технических металлов легчайшим является магний (удельный вес 1,74), наиболее тяжёлым – вольфрам (удельный вес 19,3). Удельный вес металлов в некоторой степени зависит от способа их производства и обработки.

Плавкость. Способность при нагревании переходить из твердого состояния в жидкое является важнейшим свойством металлов. При нагревании все металлы переходят из твердого состояния в жидкое, а при охлаждении расплавленного металла – из жидкого состояния в твердого. Температура плавления технических сплавов имеет не одну определённую температуру плавления, а интервал температур, иногда весьма значительный.

Электропроводность. Электропроводность заключается в переносе электричества свободными электронами. Электропроводность металлов в тысячи раз выше электропроводности неметаллических тел. При повышении температуры электропроводность металлов падет, и при понижении – возрастает. При приближении к абсолютному нулю (- 273 0 С) электропроводность беспредельно металлов колеблется от +232 0 (олово) до 3370 0 (вольфрам). Большинство увеличивается (сопротивление, падает почти до нуля).

Электропроводность сплавов всегда ниже электропроводности одного из компонентов, составляющих сплавов.

Магнитные свойства. Явно магнитными (ферромагнитьными) являются только три металла: железо, никель, и кобальт, а также некоторые их сплавы. При нагревании до определённых температур эти металлы также теряют магнитные свойства. Некоторые сплавы железа и при комнатной температуре не являются ферромагнитными. Все прочие металлы разделяются на парамагнитные (притягивают магнитами) и диамагнитные (отталкиваются магнитами).

Теплопроводность. Теплопроводность называется переход тепла в теле от более нагретого места к менее нагретому без видимого перемещения частиц этого тела. Высокая теплопроводность металлов позволяет быстро и равномерно нагревать их и охлаждать.

Из технических металлов наибольшей теплопроводностью облает медь. Теплопроводность железа значительно ниже, а теплопроводность стали меняется в зависимости от содержания в ней компонентов. При повышении температуры теплопроводность уменьшается, при понижении – увеличивается.

Теплоёмкость. Теплоёмкость называется количество тепла, необходимое для повышения температуры тела на 1 0 .

Удельной теплоемкостью вещества называется то количество тепла в килограмм – калориях, которое нужно сообщить 1кг вещества, чтобы повысить его температуру на 1 0 .

Удельная теплоёмкость металлов в сравнении с другими веществами невелика, что позволяет относительно легко нагревать их до высоких температур.

Расширяемость при нагревании. Отношение приращения длины тела при его нагревании на 1 0 к первоначальной его длине называется коэффициентом линейного расширения. Для различных металлов коэффициентом линейного расширения колеблется в широких пределах. Так, например, вольфрам имеет коэффициент линейного расширения 4,0·10 -6 , а свинец 29,5 ·10 -6 .

Коррозионная стойкость. Коррозия есть разрушение металла вследствие химического или электрохимического взаимодействия его с внешней средой. Примером коррозии является ржавление железа.

Высокая сопротивляемость коррозии (коррозионная стойкость) является важным природным свойством некоторых металлов: платины, золота и серебра, которые именно поэтому и получили название благородных. Хорошо сопротивляются коррозии также никель и другие цветные металлы. Черные металлы коррозируют сильнее и быстрее, чем цветные.

2. Механические свойства.

Прочность. Прочностью металла называют его способность сопротивляться действию внешних сил, не разрушаясь.

Твердость. Твердостью называется способность тела противостоять проникновению в него другого, более твердого тела.

Упругость. Упругостью металла называется его свойство востонавливать свою форму после прекращения действия внешних сил, вызывавших изменение формы(деформацию.)

Вязкость. Вязкость называется способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость – свойство, обратное хрупкости.

Пластичность. Пластичностию называется свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность – свойство, обратное упругости.

В табл. 1 приведены свойства технических металлов.

Таблица 1.

Свойства технических металлов.

Название металла Удельный вес(плотность) г\см 3 Температура плавления 0 С Твердость по Бринеллю Предел прочности(временное сопротивление) кг\мм 2 Относительное удлинение % Относительное сужение поперечного сечения %

Алюминий

Вольфрам

Железо

Кобальт

Магний

Марганец

Медь

Никель

Олово

Свинец

Хром

Цинк

Хрупкий

Хрупкий

Хрупкий

Хрупкий

Хрупкий

Хрупкий

3. Значение свойств металлов.

Механические свойства. Первое требование, предъявляемое ко всякому изделию, - это достаточная прочность.

Металлы обладают более высокой прочностью по сравнению с другими материалами, поэтому нагруженные детали машин, механизмов и сооружений обычно изготовляются из металлов.

Многие изделия, кроме общей прочности, должны обладать ещё особыми свойствами, характерными для работы данного изделия. Так, например, режущие инструменты должны обладать высокой твердостью. Для изготовления режущих других инструментов применяются инструментальные стали и сплавы.

Для изготовления рессор и пружин применяются специальные стали и сплавы, обладающие высокой упругостью

Вязкие металлы применяются в тех случаях, когда детали при работе подвергается ударной нагрузке.

Пластичность металлов дает возможность производить их обработку давлением (ковать, прокатывать).

Физические свойства. В авиа-, авто- и вагоностроении вес деталей часто является важнейшей характеристикой, поэтому сплавы алюминия и особенно магния являются здесь незаменимыми. Удельная прочность(отношение предела прочности к удельному весу) для некоторых, например алюминиевых, сплавов выше, чем для мягкой стали.

Плавкость используется для получения отливок путём заливки расплавленного металла в формы. Легкоплавкие металлы(например, свинец) используются в качестве закалочной среды для стали. Некоторые сложные сплавы имеют столь низкую температуру плавления, что расплавляется в горячей воде. Такие сплавы применяются для отливки типографических матриц, в приборах, служащих для предохранения от пожаров.

Металлы с высокой электропроводностью (медь, алюминий) используются в электромашиностроении, для устройства линий электропередач, а сплавы с высоким электросопротивлением – для ламп накаливания, электронагревательных приборов.

Магнитные свойства металлов играют первостепенную роль в электромашиностроении (динамомашины, мотора, трансформаторы),для приборов связи (телефонные и телеграфные аппараты) и используются во многих других видах машин и приборов.

Теплопроводность металлов дает возможность производить их физические свойства. Теплопроводность используется также при производстве пайки и сварки металлов.

Некоторые сплавы металлов имеют коэффициент линейного расширения , близкий к нулю; такие сплавы применяются для изготовления точных приборов, радиоламп. Расширение металлов должно применяться во внимание при постройке длинных сооружений, например, мостов. Нужно также учитывать,что две детали, изготовленные из металлов с различным коэффициентом расширения и скрепленные между собой, при нагревании могут дать изгиб и даже разрушение.

Химические свойства. Коррозионная стойкость особенно важна для изделий, работающих в сильно окислительных средах (колосниковые решётки, детали химических машин и приборов). Для достижения высокой коррозионной стойкости производят специальные нержавеющие, кислостойкие и жаропрочные стали, а также применяются защитные покрытия.

Технологические свойства. Имеют весьма важное значение при производстве тех или иных технологических операций.

Цветные металлы и их сплавы.

1. Свойства и применение цветных металлов.

Медь – высокая пластичность, электропроводность, теплопроводность, повышенная коррозионная стойкость является ценнейшими свойствами меди.

Высокая пластичность меди позволяет легко производить её обработку давлением: прокатку, волочение и штамповку.

Вследствие высокой электропроводности медь является самым лучшим металлом для электромашиностроения, изготовления кабелей и проводов для передачи электроэнергии.

Для изготовления состоянии она мало подвижна и плохо заполняет форму.

Медь служит основой для изготовления различных сплавов, широко применяется в машиностроении.

Алюминий - легкий металл, обладает высокой пластичностью, хорошей электропроводностью и коррозионной стойкостью. Поэтому он применяется для изготовления электропроводов, посуды, для предохранения других металлов и сплавов от окислений путем плакирования.

Магний – очень легкий металл. Это его большое и единственное преимущество.

Главным недостатком магния является его малая стойкость против коррозии. Будучи нагрет на воздухе до температуры 550-600 0 магний вспыхивает и горит ярким пламенем, поэтому резку его нужно производить очень осторожно. Кроме того, он имеет малую пластичность. Ввиду этих недостатков чистый магний не нашёл применения в технике, а применяется в качестве основы для производства весьма легких сплавов.

Свинец – очень мягкий и тягучий металл, легко обрабатывается в холодном состоянии и хорошо отливается; активно сопротивляется действию кислот. Применяется для изготовления труб, аккумуляторных пластин, а также для получения подшипниковых сплавов.

Цинк – при нормальной температуре хрупок, при нагреве до 100-150 0 - пластичен и легко обрабатывается давлением, при дальнейшем нагреве (свыше 250 0) вновь становится хрупким и может быть измельчен в порошок. В расплавленном состоянии обладает жидкотекучестью. Применяется для защиты железа от коррозии (оцинкованное железо) и в сплавах.

Олово обычно применяемое, является очень мягким и вязким металлом, хорошо обрабатывается давлением, на воздухе почти не окисляется. Используется для лужения, пайки и для получения различных сплавов. В расплавленном состоянии хорошо заполняет формы.

Руды олова редки и запасы их ограничены, поэтому олово является весьма дефицитным металлом.

Примерное назначение некоторых марок цветных металлов

(по ГОСТ)

Таблица № 2

Алюминий

Для особой химической аппаратуры; для электролитических кондесаторов и др.

Для фольги; для кабельных и токоподводящих изделий и др.

Для изделий широкого потребления и др.

Медь

Для проводников тока и сплавов высокой чистоты

Для проводников тока, для проката и др.

Для литейных бронз и для различных неответственных сплавов

Олово

Лужение консервной жести, изготовление припоя

Изготовление баббитов, припоев и низкооловынных сплавов.

Свинец

Для особого ответственного применения в аккумуляторной промышленности

Для горячего свинцования; для баббита марки БК, для закалочных ванн и др.

Цинк

Для отливок под давлением особо ответственных деталей авиа- и автопромышленности и др.

Для обычных литейных и свинцовых медно- цинковых сплавов

Магний

Для специальных литейных и деформируемых сплавов на магниевой и алюминиевой основе

Для литейных и деформируемых сплавов на магниевой и алюминиевой основе

Твёрдые сплавы.

Твердые сплавы в течение последних двух десятилетий получили очень широкое распространение в промышленности. Они используются в горной промышленности – для бурения, металлообрабатывающей промышленности – для резания, штамповки и волочения, а также для наплавки быстроизнашивающихся деталей.

Широкое распространение твердых сплавов в промышленности объясняется тем, что инструменты, оснащенные твердыми сплавами, позволяют во много раз повысить производительность имеющегося оборудования и снизить себестоимость изготовляемых изделий и что детали, направленные твердыми сплавами, работают на истирание значительно (иногда в десятки раз) дольше ненаплавленных деталей.

Основной составляющей всех сплавов являются карбиды металлов: вольфрама, молибдена, хрома, титана, марганца. Карбиды придают сплавам высокую твердость и износоустойчивость. Кроме того, в состав твердых сплавов входят кобальт, никель, железо.

Твердые сплавы делятся на литые, порошкообразные и металлокерамические.

1.Литые и порошкообразные твердые сплавы.

Эти сплавы применяются для наплавки быстроизнашивающихся деталей.

Литые твердые сплавы – стеллиты и стеллитоподобные – отличаются высокой коррозионной стойкостью, в частности в серной кислоте; сохраняют стойкость при высоких температурах (стеллиты – до 800 0 , стеллитоподобные до – 600 0).

Стеллиты и сормайт широко применяются в машиностроении для наплавки деталей и инструментов, работающих без ударов, и там, где деталь после механической обработки должна быть ровной и чистой (главным образом при трении скольжения), например: для гибочных и вытяжных матриц, центров станков, измерительных скоб, колец для протяжки. Ввиду высокой жаропрочности этих сплавов их применяют также для наплавки деталей, работающихся при высоких температурах, например: для деталей металлургического оборудования, ножей для горячей резки, клапанов двигателей внутреннего сгорания.

Наплавку литых твердых сплавов можно производить на стальные (железные) и чугунные детали независимо от их сечения и конфигурации. Покрытие рабочей поверхности детали слоем сплава производится с помощью газовой горелки ацетилено – кислородным пламенем.

Порошкообразные твёрдые сплавы – вокар и сталинит – применяются главным образом для наварки деталей производящих грубую работу, где допускается максимальное количество пор и раковин и обработка наваренной поверхности не является обязательной (щеки дробилок, зубья экскаваторов, землечерпалок и др.).

Вокар содержит 86% вольфрама, 9,5 – 10,5% углерода, до 0,5% кремния и до 2,5% железа; сталинит – 16 – 20% хрома, 8 – 10% углерода, 13 – 17% марганца до 3% кремния, остальное – железо.

Наварка порошкообразных твердых сплавов производится электрицеской дугой постоянного тока по способу Бенардоса (с применением угольного электрода). Поверхность, подлежащая наварке, устанавливается горизонтально, на нее наносят тонкий(0,2 – 0,3мм)слой флюса (прокаленной буры) и слой порошкообразного твердого сплава (шихты) толщиной 3 – 5мм.Электрод соединяется с отрицательным полюсом, деталь – с положительным. Электрическая дуга, образующаяся между электродом и деталью, расплавляет шихту и близлежащие слои основного металла, при этом образуется небольшая ванночка расплавленного твердого сплава и основного металла. Электроду сообщают поступательное зигзагообразное движение, причем дуга непрерывно переносится по поверхности твердого сплава.

2. Металлокерамические твердые сплавы.

Эти сплавы применяются в виде пластинок к режущему инструменту. Инструменты с пластинками твердых сплавов в настоящее время широко применяется в заводской практике для скоростного резания металлов.

Характерной особенностью металлокерамических твердых сплавов является их высокая твердость и способность сохранять режущиеся свойства при температуре до 1000 – 1100 0 .

Основной режущей составляющей металлокерамических твердых сплавов является карбиды вольфрама; некоторые марки сплавов содержат, кроме того, карбиды титана. В качестве связующего металла применяется кобальт.

Для изготовления пластинок металлокерамических твердых сплавов порошкообразные составляющие тщательно перемешиваются и смесь прессуется под давлением от 1000 до 4200кг\см 2 . Полученные в прессформах полуфабрикаты помещаются в электропечи, где при температуре 1400 – 1500 0 происходит их спекание. При спекании связующий металл (кобальт) расплавляется и, обволакивая зерна карбидов, связывает их. При производстве твердых сплавов операции прессования и спекания часто заменяют одной операцией – горячим прессованием.

Пластинки твердых сплавов служат для оснащения резцов, сверл, фрез, зеркеров и других инструментов. Оснащения производится путём напайки пластин на державки или путем механического крепления пластинок к державкам.

Легкие металлы и их сплавы.

3.Алюминиевые литейные сплавы.

В качестве литейных сплавов чаще всего применяются алюминиевые сплавы с кремнием, с медью и с марганцем.

Сплавы алюминия с кремнием. Называемые также силуминами, в технике находят применение силумины, близкие к эвтектическому составу (от 6 до 13%). Эти сплавы обладают хорошими литейными свойствами (высокой жидкотекучестью и малой усадкой), большой плотностью и повышенными механическими свойствами по сравнению с алюминием. Повышенные механические свойства достигаются путем модифицирования, состоящего в обработке расплавленного силумина модификатором (металлическим натрием или смесью фторных солей натрия и калия). Небольшое количество модификатора (около 0,01% по весу) резко меняет структуру силумина: кристаллы становятся мелкими, а излом приобретает бархатистый вид. Силумины, не подвергаются модифицированию, имеют грубозернистую структуру и худшие механические свойства.

При введении в состав силуминов небольшого количества магния и марганца их механические свойства ещё более улучшаются, некоторые марки силуминов с указанием области их применения приведены в таблице 3.

Вопрос

Механические свойства

К основным механическим свойства относят:
- прочность
- пластичность
- твердость

Прочность – способность материала сопротивляться разрушению под действием нагрузок.
Пластичность – способность материала изменять свою форму и размеры по действием внешних сил.
Твердость – способность материала сопротивляться проникновению в него другого тела.

Физические свойства

К физическим свойства относят:
- цвет
- плотность
- температуру плавления
- теплопроводность
- электропроводность
- магнитные свойства

Цвет – способность металлов отражать излучение с определенной длиной волны. Например, медь имеет розовато-красный цвет, алюминий – серебристо-белый.

Плотность металла определяется отношением массы к единице объема. По плотности металлы делят на легкие (менее 4500 кг/м 3) и тяжелые.

Температура плавления – температура, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие (вольфрам – 3416 о С, тантал – 2950 о С и др.) и легкоплавкие (олово – 232 о С, свинец – 327 о С). В единицах СИ температуру плавления выражают в градусах Кельвина (К).

Теплопроводность – способность металлов передавать тепло от более нагретых участков тела к менее нагретым. Большой теплопроводностью обладают серебро, медь, алюминий. В единицах СИ теплопроводность имеет размерность Вт/(м·К).

Способность металлов проводить электрический ток оценивают двумя противоположными характеристиками – электрической проводимостью и электрическим сопротивлением.
Электропроводность оценивается в системе СИ в сименсах (См). Электросопротивление выражают в омах (Ом). Хорошая электропроводность необходима, например, для токонесущих проводов (их изготавливают из меди, алюминия). При изготовлении электронагревательных приборов и печей необходимы сплавы с высоким электросопротивлением (из нихрома, константана, манганина). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается.
Магнитные свойства выражаются в способности металлов намагничиваться. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, которые называют ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.

Химические свойства

Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, растворами щелочей и др.

К химическим свойствам относят:
- коррозионную стойкость
- жаростойкость

Коррозионная стойкость – способность металлов сопротивляться химическому разрушению под действием на их поверхность внешней агрессивной среды (коррозия происходит при вступлении в химическое взаимодействие с другими элементами).

Жаростойкость – способность металлов сопротивляться окислению при высоких температурах

Химические свойства учитывают в первую очередь для изделий или деталей, работающих в химически агрессивных средах:
- емкости для перевозки химических реактивов
- трубопроводы химических веществ
- приборы и инструменты в химической промышленности

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

1. Литейные свойства - характеризуют способность материала к получению из него качественных отливок.
Жидкотекучесть – характеризует способность расплавленного металла заполнять литейную форму.
Усадка (линейная и объемная) – характеризует способность материала изменять свои линейные размеры и объем в процессе затвердевания и охлаждения. Для предупреждения линейной усадки при создании моделей используют нестандартные метры.
Ликвация – неоднородность химического состава по объему.

2. Способность материала к обработке давлением - это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь.Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб.Критерием годности материала является отсутствие дефектов после испытания.

3. Свариваемость - это способность материала образовывать неразъемные соединения требуемого качества. Оценивается по качеству сварного шва.

4. Способность к обработке резанием - характеризует способность материала поддаваться обработке различным режущим инструментом. Оценивается по стойкости инструмента и по качеству поверхностного слоя.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.

1. Износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

2. Коррозионная стойкость (см. Электрохимическая и химическая коррозия металлов) – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

3. Жаростойкость (см. Жаростойкость. Жаростойкая сталь. Жаростойкие сплавы.) – это способность материала сопротивляться окислению в газовой среде при высокой температуре.

4. Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.

5. Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.

6. Антифрикционность – способность материала прирабатываться к другому материалу.

Вопрос

Процесс кристаллизации. При переходе металла из жидкого состояния в твердое образуются кристаллы. Такой процесс называют кристаллизацией. Процесс кристаллизации металла можно рассматривать по кривым охлаждения, которые обычно получают опытным путем. Например, для чистого металла, охлаждаемого очень медленно, кривая охлаждения показывает, что, если металл находится в жидком состоянии, температура понижается почти равномерно. Если металл охладить до температуры плавления Тпл (точка а на кривой), то начинается кристаллизация ипадение температуры прекращается, несмотря на непрерывную отдачу тепла окружающей атмосфере. Получаемый горизонтальный участок на кривой охлаждения показывает, что в металле происходит процесс образования кристаллов с выделением тепла, называемый теплотой кристаллизации.Кристаллизация протекает от точки а до точки б, где она заканчивается и металл затвердевает. Дальнейшее падение температуры на кривой указывает на охлаждение затвердевшего слитка (рис. А). В металлических сплавах кривая охлаждения имеет несколько иной вид. Охладившись до температуры плавления Т П л , сплав еще некоторое время остается жидким. Кристаллизация сплава начинается при температуре переохлаждения Т п, лежащей ниже теоретической температуры плавления. Разность между теоретической и фактической температурами кристаллизации называют степенью переохлаждения.Она зависит от природы сплава, его чистоты и скорости охлаждения. Чем больше скорость охлаждения сплава, тем больше степень переохлаждения. Петля на кривой охлаждения показывает, что кристаллизация сопровождается выделением тепла, которое повышает температуру сплава до температуры плавления, поддерживая ее до полного затвердевания металла. (рис.Б) Аморфные тела затвердевают постепенно. В этом случае кривая охлаждениябудет плавной, без горизонтальных площадок. (рис.В) Процесс образования кристаллов состоит из двух одновременно протекающих стадий: появления зародышей - устойчивых центров кристаллизации и роста кристалликов вокруг этих центров. Сначала каждый кристаллик в жидкости растет свободно, сохраняя правильную геометрическую форму. Так как одновременно образуется много кристаллических центров и рост кристалликов идет по всем направлениям, то смежные кристаллы, увеличиваясь, начинают непосредственно соприкасаться друг с другом и правильная форма их нарушается. В результате кристалл приобретает округленную форму, напоминающую зерно. Такие кристаллы принято называть кристаллитами или зернами. В зависимости от условий затвердевания зерна могут быть крупными, хорошо различимыми невооруженным глазом, и мелкими, которые можно рассмотреть только при помощи металлографического микроскопа. Процесс кристаллизации может быть описан количественно, если известны зарождение центров кристаллизации и скорость роста кристалликов. Число центров кристаллизации и скорость роста кристалликов зависят от степени переохлаждения металла. С увеличением степени переохлаждения ∆T число центров и скорость роста также возрастают, достигая максимального значения. Однако характер роста величин числа центров и скорости роста различен. Если степень переохлаждения невелика, то скорость роста преобладает над числом центров, в результате чего образуется крупнозернистая структура.С увеличением степени переохлаждения скорость роста не изменяется, число центров продолжает расти, что приводит к образованию мелкозернистой структуры.

Введение

Металлы — химические элементы, характеризующиеся в твердом состоянии внутренним кристаллическим строением. Металлы имеют характерный блеск, они непрозрачны, при деформациях пластичны, характеризуются значительной теплопроводностью и электропроводностью. Металлы и сплавы, применяемые для изготовления товаров народного потребления, делят на черные и цветные. К цветным металлам относятся также благородные (драгоценные) металлы.

Все свойства металлов и сплавов можно разделить на четыре группы: физические, химические, технологические и механические.

1.Физические свойства.

К ним относятся: температура плавления, цвет, плотность, коэффициенты линейного и объемного расширения, электропроводность, теплопроводность, склонность к намагничиванию. Физические свойства сплавов обуславливаются их составом и структурой. Состав металлов и сплавов определяется химическим, спектральным и фазовыми анализами: структуру металла и сплава - рентгено-структурным и магнитострук-турным анализами, металлографией и магнитной металлографией, электрические свойства сплавов - их электросопротивлением. Теплопроводность - способность тел проводить тепло при нагреве и охлаждении. Металлы имеют сравнительно высокую теплопроводность, чем она выше, тем равномернее распределяется температура по объему металла и тем быстрее он прогревается. Электропроводность - свойство металла проводить электрический ток. Магнитные свойства - способность металла намагничиваться (ферромагниты, парамагниты, диамагниты).

2.Химические свойства

Это способность металла к взаимодействию с другими веществами: воздухом, водой, кислотами, щелочами и др. К химическим свойствам металлов и сплавов относятся их окисляемость, растворимость, коррозионная стойкость. Для определения химических свойств металлы и сплавы испытывают на общую коррозию в различных средах, межкристаллитную коррозию и на коррозионное растрескивание.

3.Технологические свойства.

Способность металла подвергаться различным методам горячей и холодной обработки. К ним относятся: жидкотекучесть, ковкость, свариваемость, обрабатываемость режущим инструментом. Технологические свойства металлов и сплавов имеют исключительное значение при выполнении тех или иных операций в производстве и, в частности, при выборе приемов и методов изготовления деталей машин.

Литейные свойства определяются жидкотекучестью, усадкой и склонностью к ликвации. Жидкотекучесть - способность металлов и сплавов легко растекаться и заполнять полностью литейную форму. Усадкой называется сокращение объема и размеров металла отливки при затвердевании и последующем охлаждении.

Ликвацией называется неоднородность химического состава твердого сплава по сечению слитка или заготовки. Например: чугун обладает высокими литейными свойствами - хорошей жидкотекучестью, небольшей усадкой и незначительной склонностью к ликвации. Сталь имеет меньшую, чем чугун, жидкотекучесть, но большую усадку и склонность к образованию ликвации. Оловянистые бронзы обладают хорошей жидкотекучестью и малой усадкой.

Ковкость - способность металлов и сплавов подвергаться обработке давлением. Это свойство связано с их пластической деформацией, особенно при нагревании. С ковкостью связаны такие важнейшие виды обработки металлов давлением, как прокатка, прессование, ковка, штамповка и волочение. В нагретом состоянии ковкость металла обычно выше. Хорошую ковкость имеет сталь в нагретом состоянии; чугун этим свойством не обладает. Алюминиевые сплавы и латуни обладают ковкостью в холодном состоянии.

Свариваемость - способность металлов и сплавов давать прочные неразъемные соединения изготовленных из них деталей. Сварные конструкции легче, прочнее и дешевле клепанных. Хорошая свариваемость у углеродистых, у низкоуглеродистых и низколегированных сталей. Высокоуглеродистые и высоколегированные стали, некоторые цветные металлы и сплавы имеют худшую свариваемость.

Обработка резанием - это свойство широко используется, т.к. получить обработкой резанием нужную форму, точные размеры и чистоту поверхности детали намного рациональнее по сравнению с другими методами. 4.Механические свойства - характеризуют отношение металла или сплава к действию на них внешних сил. Упругость - свойство металлов возвращаться к первоначальной форме после прекращения действия сил.

Пластичность - способность металла легко деформироваться под действием приложенных внешних сил и сохранять новую форму после прекращения действия этих сил. Вязкость - свойство металла выдерживать без разрушения ударные нагрузки (силы). Износостойкость - это сопротивление истиранию. Твердость - способность металла сопротивляться проникновению в него другого более твердого металла. Прочность - свойство металла сопротивляться разрушению под действием внешних сил или это максимальная нагрузка, которую выдерживает металл в момент наступления разрушения. Хрупкость - свойство металла разрушаться без заметной пластической деформации. Выносливость - свойство металла выдерживать, не разрушаясь, большое число повторных нагрузок. Ползучесть - свойство металла медленно и непрерывно пластически деформироваться при постоянной нагрузке, особенно при высокой температуре.

Заключение.

Огромное большинство металлов находится в природе в виде соединений с другими элементами. Только немногие металлы встречаются в свободном состоянии, и тогда они называются самородными. Золото и платина встречаются почти исключительно в самородном виде, серебро и медь - отчасти в самородном виде; иногда попадаются также самородные ртуть, олово и некоторые другие металлы. Добывание золота и платины производится или посредством механического отделения их от той породы, в которой они заключены, например промывкой воды, или путем извлечения их из породы различными реагентами с последующим выделением металла из раствора. Все остальные металлы добываются химической переработкой их природных соединений. Минералы и горные породы, содержащие соединения металлов и пригодные для получения этих металлов заводским путем, носят название руд. Главными рудами являются оксиды, сульфиды и карбонаты металлов. Важнейший способ получения металлов из руд основан на восстановлении их оксидов углем.

Список используемой литературы:

3. Материаловедение: Учебник для вузов. Солнцев Ю. П., Пряхин Е. И. ХИМИЗДАТ, 2007г.

4. Материаловедение: Учебник для высших технических учебных заведений. Б.Н. Арзамасов, И.И. Сидорин, Г.Ф. Косолапов и др.; под общ. ред. Б.Н. Арзамасова. - 2-е изд., испр. и доп. - М.: Машиностроение, 1986


Close