Продолжаем разбираться с основами алгебры. Сегодня мы поработаем с , а именно рассмотрим такое действие, как вынесение общего множителя за скобки .

Содержание урока

Основной принцип

Распределительный закон умножения позволяет умножить число на сумму (или сумму на число). Например, чтобы найти значение выражения 3 × (4 + 5) можно умножить число 3 на каждое слагаемое в скобках и сложить полученные результаты:

3 × (4 + 5) = 3 × 4 + 3 × 5 = 12 + 15

Число 3 и выражение в скобках можно поменять местами (это следует из переместительного закона умножения). Тогда каждое слагаемое, которое в скобках, будет умножено на число 3

(4 + 5) × 3 = 4 × 3 + 5 × 3 = 12 + 15

Пока не будем вычислять конструкцию 3 × 4 + 3 × 5 и складывать полученные результаты 12 и 15 . Оставим выражение в виде 3 (4 + 5) = 3 × 4 + 3 × 5 . Ниже оно нам потребуется именно в таком виде, чтобы понять суть вынесения общего множителя за скобки.

Распределительный закон умножения иногда называют внесением множителя во внутрь скобок. В выражении 3 × (4 + 5) множитель 3 был за скобками. Умножив его на каждое слагаемое в скобках, мы по сути внесли его во внутрь скобок. Для наглядности можно так и записать, хоть и не принято так записывать:

3 (4 + 5) = (3 × 4 + 3 × 5)

Поскольку в выражении 3 × (4 + 5) число 3 умножается на каждое слагаемое в скобках, это число является общим множителем для слагаемых 4 и 5

Как говорилось ранее, умножив этот общий множитель на каждое слагаемое в скобках, мы вносим его во внутрь скобок. Но возможен и обратный процесс — общий множитель можно обратно вынести за скобки. В данном случае в выражении 3 × 4 + 3 × 5 общий множитель виден, как на ладони — это множитель 3 . Его и нужно вынести за скобки. Для этого сначала записывается сам множитель 3

и рядом в скобках записывается выражение 3 × 4 + 3 × 5 но уже без общего множителя 3 , поскольку он вынесен за скобки

3 (4 + 5)

В результате вынесения общего множителя за скобки получается выражение 3 (4 + 5) . Это выражение тождественно равно предыдущему выражению 3 × 4 + 3 × 5

3(4 + 5) = 3 × 4 + 3 × 5

Если вычислить обе части полученного равенства, то получим тождество:

3(4 + 5) = 3 × 4 + 3 × 5

27 = 27

Как происходит вынесение общего множителя за скобки

Вынесение общего множителя за скобки по сути является обратной операцией внесению общего множителя во внутрь скобок.

Если при внесении общего множителя внутрь скобок, мы умножаем этот множитель на каждое слагаемое в скобках, то при вынесении этого множителя обратно за скобки, мы должны разделить каждое слагаемое в скобках на этот множитель.

В выражении 3 × 4 + 3 × 5 , которое было рассмотрено выше, так и происходило. Каждое слагаемое было разделено на общий множитель 3 . Произведения 3 × 4 и 3 × 5 и являются слагаемыми, поскольку если их вычислить, мы получим сумму 12 + 15

Теперь мы можем детально увидеть, как происходит вынесение общего множителя за скобки:

Видно, что общий множитель 3 сначала вынесен за скобки, затем в скобках происходит деление каждого слагаемого на этот общий множитель.

Деление каждого слагаемого на общий множитель можно выполнять не только разделяя числитель на знаменатель, как это было показано выше, но и сокращая эти дроби. В обоих случаях получится один и тот же результат:

Мы рассмотрели простейший пример вынесения общего множителя за скобки, чтобы понять основной принцип.

Но не всё так просто, как кажется на первый взгляд. После того, как число умножено на каждое слагаемое в скобках, полученные результаты складывают, и общий множитель пропадает из виду.

Вернёмся к нашему примеру 3 (4 + 5) . Применим распределительный закон умножения, то есть умножим число 3 на каждое слагаемое в скобках и сложим полученные результаты:

3 × (4 + 5) = 3 × 4 + 3 × 5 = 12 + 15

После того, как вычислена конструкция 3 × 4 + 3 × 5 , мы получаем новое выражение 12 + 15 . Видим, что общий множитель 3 пропал из виду. Теперь в полученном выражении 12 + 15 попробуем обратно вынести общий множитель за скобки, но чтобы вынести этот общий множитель его сначала нужно найти.

Обычно при решении задач встречаются именно такие выражения, в которых общий множитель сначала нужно найти, прежде чем его выносить.

Чтобы в выражении 12 + 15 вынести общий множитель за скобки, нужно найти наибольший общий делитель (НОД) слагаемых 12 и 15. Найденный НОД и будет общим множителем.

Итак, найдём НОД для чисел 12 и 15. Напомним, что для нахождения НОД необходимо разложить исходные числа на простые множители, затем выписать первое разложение и убрать из него множители, которые не входят в разложение второго числа. Оставшиеся множители нужно перемножить и получить искомый НОД. Если испытываете затруднения на этом моменте, обязательно повторите .

НОД для 12 и 15 это число 3. Данное число является общим множителем для слагаемых 12 и 15. Его и нужно выносить за скобки. Для этого сначала записываем сам множитель 3 и рядом в скобках записываем новое выражение, в котором каждое слагаемое выражения 12 + 15 разделено на общий множитель 3

Ну и дальнейшее вычисление не составляет особого труда. Выражение в скобках легко вычисляется — двенадцать разделить на три будет четыре , а пятнадцать разделить на три будет пять :

Таким образом, при вынесении общего множителя за скобки в выражении 12 + 15 получается выражение 3(4 + 5) . Подробное решение выглядит следующим образом:

В коротком решении пропускают запись в которой показано, как каждое слагаемое разделено на общий множитель:

Пример 2. 15 + 20

Найдём НОД для слагаемых 15 и 20

НОД для 15 и 20 это число 5. Данное число является общим множителем для слагаемых 15 и 20. Его и вынесем за скобки:

Получили выражение 5(3 + 4). Получившееся выражение можно проверить. Для этого достаточно умножить пятёрку на каждое слагаемое в скобках. Если мы всё сделали правильно, то должны получить выражение 15 + 20

Пример 3. Вынести общий множитель за скобки в выражении 18+24+36

Найдём НОД для слагаемых 18, 24 и 36. Чтобы найти , нужно разложить эти числа на простые множители, затем найти произведение общих множителей:

НОД для 18, 24 и 36 это число 6. Данное число является общим множителем для слагаемых 18, 24 и 36. Его и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим число 6 на каждое слагаемое в скобках. Если мы всё сделали правильно, то должны получить выражение 18+24+36

Пример 4. Вынести общий множитель за скобки в выражении 13 + 5

Слагаемые 13 и 5 являются простыми числами. Они раскладываются только на единицу и самих себя:

Это значит, что у слагаемых 13 и 5 нет общих множителей, кроме единицы. Соответственно, нет смысла выносить эту единицу за скобки, поскольку это ничего не даст. Покажем это:

Пример 5. Вынести общий множитель за скобки в выражении 195+156+260

Найдём НОД для слагаемых 195, 156 и 260

НОД для 195, 156 и 260 это число 13. Данное число является общим множителем для слагаемых 195, 156 и 260. Его и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим 13 на каждое слагаемое в скобках. Если мы всё сделали правильно, то должны получить выражение 195+156+260

Выражение в котором требуется вынести общий множитель за скобки может быть не только суммой чисел, но и разностью. Например, вынесем общий множитель за скобки в выражении 16 − 12 − 4. Наибольшим общим делителем для чисел 16, 12 и 4 это число 4. Данное число и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим четвёрку на каждое число в скобках. Если мы всё сделали правильно, то должны получить выражение 16 − 12 − 4

Пример 6. Вынести общий множитель за скобки в выражении 72+96−120

Найдём НОД для чисел 72, 96 и 120

НОД для 72, 96 и 120 это число 24. Данное число является общим множителем для слагаемых 195, 156 и 260. Его и вынесем за скобки:

Проверим получившееся выражение. Для этого умножим 24 на каждое число в скобках. Если мы всё сделали правильно, то должны получить выражение 72+96−120

Общий множитель, выносимый за скобки, может быть и отрицательным. Например, вынесем общий множитель за скобки в выражении −6−3. Вынести общий множитель за скобки в таком выражении можно двумя способами. Рассмотрим каждый из них.

Способ 1.

Заменим вычитание сложением:

−6 + (−3)

Теперь находим общий множитель. Общим множителем данного выражения будет наибольший общий делитель слагаемых −6 и −3.

Модуль первого слагаемого это 6. А модуль второго слагаемого это 3. НОД(6 и 3) равен 3. Данное число является общим множителем для слагаемых 6 и 3. Его и вынесем за скобки:

Выражение полученное таким способом получилось не очень аккуратным. Много скобок и отрицательных чисел не придают выражению простоту. Поэтому можно воспользоваться вторым способом, суть которого заключается в том, чтобы вынести за скобки не 3, а −3.

Способ 2.

Как и в прошлый раз заменяем вычитание сложением

−6 + (−3)

В этот раз мы вынесем за скобки не 3, а −3

Выражение полученное в этот раз выглядит намного проще. Запишем решение покороче, чтобы сделать его ещё проще:

Разрешать выносить отрицательный множитель за скобки связано с тем, что разложение чисел −6 и (−3) можно записать двумя видами: сначала сделать множимое отрицательным, а множитель положительным:

−2 × 3 = −6

−1 × 3 = −3

во втором случае множимое можно сделать положительным, а множитель отрицательным:

2 × (−3) = −6

1 × (−3) = −3

А значит мы вольны выносить за скобки тот сомножитель, который захотим.

Пример 8. Вынести общий множитель за скобки в выражении −20−16−2

Заменим вычитание сложением

−20−16−2 = −20 + (−16) + (−2)

Наибольшим общим делителем для слагаемых −20, −16 и −2 является число 2. Это число является общим множителем для этих слагаемых. Посмотрим, как это выглядит:

−10 × 2 = −20

−8 × 2 = −16

−1 × 2 = −2

Но приведенные разложения можно заменить на тождественно равные разложения. Различие будет в том, что общим множителем будет не 2 , а −2

10 × (−2) = −20

8 × (−2) = −16

1 × (−2) = −2

Поэтому для удобства за скобки можно вынести не 2 , а −2

Запишем приведенное решение покороче:

А если бы вынесли за скобки 2 , то получилось бы не совсем аккуратное выражение:

Пример 9. Вынести общий множитель за скобки в выражении −30−36−42

Заменим вычитание сложением:

−30 + (−36) + (−42)

Наибольшим общим делителем слагаемых −30, −36 и −42 это число 6. Данное число является общим множителем для этих слагаемых. Но за скобки мы вынесем не 6, а −6 поскольку числа −30, −36 и −42 можно представить так:

5 × (−6) = −30

6 × (−6) = −36

7 × (−6) = −42

Вынесение минуса за скобки

При решении задач иногда может быть полезным вынесение минуса за скобки. Это позволяет упростить выражение и привести его в порядок.

Рассмотрим следующий пример. Вынести минус за скобки в выражении −15+(−5)+(−3)

Для наглядности заключим данное выражение в скобки, ведь речь идёт о том, чтобы вынести минус за эти скобки

(−15 + (−5) + (−3))

Итак, чтобы вынести минус за скобки, нужно записать перед скобками минус и в скобках записать все слагаемые, но с противоположными знаками

Мы вынесли минус за скобки в выражении −15+(−5)+(−3) и получили −(15+5+3). Оба выражения равны одному и тому же значению −23

−15 + (−5) + (−3) = −23

−(15 + 5 + 3) = −(23) = −23

Поэтому между выражениями −15+(−5)+(−3) и −(15+5+3) можно поставить знак равенства, потому что они несут одно и то же значение:

−15 + (−5) + (−3) = −(15 + 5 + 3)

На самом деле при вынесении минуса за скобки опять же срабатывает распределительный закон умножения:

a(b+c) = ab + ac

Если поменять местами левую и правую часть этого тождества, то получится, что сомножитель a вынесен за скобки

ab + ac = a(b+c)

Тоже самое происходит, когда мы выносим общий множитель в других выражениях и когда выносим минус за скобки.

Очевидно, что при вынесении минуса за скобки, выносится не минус, а минус единица. Мы уже говорили, что коэффициент 1 принято не записывать.

Поэтому и образуется перед скобками минус, а знаки слагаемых которые были в скобках меняют свой знак на противоположный, поскольку каждое слагаемое разделено на минус единицу.

Вернёмся к предыдущему примеру и детально увидим, как на самом деле минус выносился за скобки

Пример 2. Вынести минус за скобки в выражении −3 + 5 + 11

Ставим минус и рядом в скобках записываем выражение −3 + 5 + 11 с противоположным знаком у каждого слагаемого:

−3 + 5 + 11 = −(3 − 5 − 11)

Как и в прошлом примере, здесь за скобки вынесен не минус, а минус единица. Подробное решение выглядит следующим образом:

Сначала получилось выражение −1(3 + (−5) + (−11)) , но мы раскрыли в нем внутренние скобки и получили выражение −(3 − 5 − 11) . Раскрытие скобок это тема следующего урока, поэтому если данный пример вызывает у вас затруднения, можете пока пропустить его.

Вынесение общего множителя за скобки в буквенном выражении

Выносить общий множитель за скобки в буквенном выражении намного интереснее.

Для начала рассмотрим простейший пример. Пусть имеется выражение 3 a + 2 a . Вынесем общий множитель за скобки.

В данном случае, общий множитель виден невооруженным глазом — это множитель a . Его и вынесем за скобки. Для этого записываем сам множитель a и рядом в скобках записываем выражение 3a + 2a , но уже без множителя a поскольку он вынесен за скобки:

Как и в случае с числовым выражением, здесь происходит деление каждого слагаемого на вынесенный общий множитель. Выглядит это так:

В обеих дробях переменные a были сокращены на a . Вместо них в числителе и в знаменателе получились единицы. Единицы получились по причине того, что вместо переменной a может стоять любое число. Эта переменная располагалась и в числителе и в знаменателе. А если в числителе и в знаменателе располагаются одинаковые числа, то наибольший общий делитель для них будет само это число.

Например, если вместо переменной a подставить число 4 , то конструкция примет следующий вид: . Тогда четвёрки в обеих дробях можно будет сократить на 4:

Получается то же самое, что и раньше, когда вместо четвёрок стояла переменная a .

Поэтому не следует пугаться при виде сокращения переменных. Переменная это полноправный множитель, пусть даже выраженный буквой. Такой множитель можно выносить за скобки, сокращать и выполнять другие действия, которые допустимы к обычным числам.

Буквенное выражение содержит не только числа, но и буквы (переменные). Поэтому общий множитель, который выносится за скобки часто бывает буквенным множителем, состоящим из числа и буквы (коэффициента и переменной). К примеру, следующие выражения являются буквенными множителями:

3a, 6b, 7ab, a, b, c

Прежде чем выносить такой множитель за скобки, нужно определиться, какое число будет в числовой части общего множителя и какая переменная будет в буквенной части общего множителя. Другими словами, нужно узнать какой коэффициент будет у общего множителя и какая переменная будет в него входить.

Рассмотрим выражение 10a + 15a . Попробуем вынести в нём общий множитель за скобки. Сначала определимся из чего будет состоять общий множитель, то есть узнаем его коэффициент и какая переменная будет в него входить.

Коэффициентом общего множителя должен быть наибольший общий делитель коэффициентов буквенного выражения 10a + 15a . 10 и 15 , а их наибольший общий делитель это число 5 . Значит число 5 будет коэффициентом общего множителя, выносимого за скобки.

Теперь определимся какая переменная будет входить в общий множитель. Для этого нужно посмотреть на выражение 10a + 15a и найти буквенный сомножитель, который входит во все слагаемые. В данном случае, это сомножитель a . Этот сомножитель входит в каждое слагаемое выражения 10a + 15a . Значит переменная a будет входить в буквенную часть общего множителя, выносимого за скобки:

Теперь осталось вынести общий множитель 5a за скобки. Для этого разделим каждое слагаемое выражения 10a + 15a на 5a . Для наглядности коэффициенты и числа будем отделять знаком умножения (×)

Проверим получившееся выражение. Для этого умножим 5a на каждое слагаемое в скобках. Если мы всё сделали правильно, то получим выражение 10a + 15a

Буквенный множитель не всегда можно вынести за скобки. Иногда общий множитель состоит только из числа, поскольку ничего подходящего для буквенной части в выражении не находится.

Например, вынесем общий множитель за скобки в выражении 2a − 2b . Здесь общим множителем будет только число 2 , а среди буквенных сомножителей общих множителей в выражении нет. Поэтому в данном случае будет вынесен только множитель 2

Пример 2. Вынести общий множитель выражении 3x + 9y + 12

Коэффициентами данного выражения являются числа 3, 9 и 12, их НОД равен 3 3 . А среди буквенных сомножителей (переменных) нет общего множителя. Поэтому окончательный общий множитель это 3

Пример 3. Вынести общий множитель за скобки в выражении 8x + 6y + 4z + 10 + 2

Коэффициентами данного выражения являются числа 8, 6, 4, 10 и 2, их НОД равен 2 . Значит коэффициентом общего множителя, выносимого за скобки, будет число 2 . А среди буквенных сомножителей нет общего множителя. Поэтому окончательный общий множитель это 2

Пример 4. Вынести общий множитель 6ab + 18ab + 3abc

Коэффициентами данного выражения являются числа 6, 18 и 3, их НОД равен 3 . Значит коэффициентом общего множителя, выносимого за скобки, будет число 3 . В буквенную часть общего множителя будут входить переменные a и b, поскольку в выражении 6ab + 18ab + 3abc эти две переменные входят в каждое слагаемое. Поэтому окончательный общий множитель это 3ab

При подробном решении выражение становится громоздким и даже непонятным. В данном примере это более чем заметно. Это связано с тем, что мы сокращаем множители в числителе и в знаменателе. Лучше всего делать это в уме и сразу записывать результаты деления. Тогда выражение станет коротким и аккуратным:

Как и в случае с числовым выражением в буквенном выражении общий множитель может быть и отрицательным.

Например, вынесем общий за скобки в выражении −3a − 2a .

Для удобства заменим вычитание сложением

−3a − 2a = −3a + (−2a )

Общим множителем в данном выражении является множитель a . Но за скобки можно вынести не только a , но и −a . Его и вынесем за скобки:

Получилось аккуратное выражение −a (3+2). Не следует забывать, что множитель −a на самом деле выглядел как −1a и после сокращения в обеих дробях переменных a , в знаменателях остались минус единицы. Поэтому в итоге и получаются положительные ответы в скобках

Пример 6. Вынести общий множитель за скобки в выражении −6x − 6y

Заменим вычитание сложением

−6x−6y = −6x+(−6y)

Вынесем за скобки −6

Запишем решение покороче:

−6x − 6y = −6(x + y)

Пример 7. Вынести общий множитель за скобки в выражении −2a − 4b − 6c

Заменим вычитание сложением

−2a-4b-6c = −2a + (−4b) + (−6c)

Вынесем за скобки −2

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

>>Математика: Вынесение общего множителя за скобки

Прежде чем начинать изучение этого параграфа, вернитесь к § 15. Там мы уже рассмотрели пример, в котором требовалось представить многочлен в виде произведения многочлена и одночлена. Мы установили, что эта задача не всегда корректна. Если все же такое произведение удалось составить, то обычно говорят, вынесение что многочлен разложен на множители с помощью общего вынесения общего множителя за скобки. Рассмотрим несколько примеров.

Пример 1. Разложить на множители многочлен:

А) 2х + 6у, в) 4а 3 + 6а 2 ; д) 5а 4 - 10а 3 + 15а 8 .
б) а 3 + а 2 ; г) 12аЬ 4 - 18а 2 b 3 с;

Р е ш е н и е.
а) 2х + 6у = 2 (x + Зу). За скобки вынесли общий делитель коэффициентов членов многочлена.

б) а 3 + а 2 = а 2 (а + 1). Если одна и та же переменная входит во все члены многочлена, то ее можно вынести за скобки в степени, равной наименьшей из имеющихся (т. е. выбирают наименьший из имеющихся показателей).

в) Здесь используем тот же прием, что и при решении примеров а) и б): для коэффициентов находим общий делитель (в данном случае число 2), для переменных - наименьшую степень из имеющихся (в данном случае а 2). Получаем:

4а 3 + 6а 2 = 2а 2 2а + 2а 2 3 = 2а 2 (2а + 3).

г) Обычно для целочисленных коэффициентов стараются найти не просто общий делитель, а наибольший общий делитель. Для коэффициентов 12 и 18 им будет число 6. Замечаем, что переменная а входит в оба члена многочлена, при этом наименьший показапоказатель равен 1. Переменная b также входит в оба члена многочлена, причем наименьший показатель равен 3. Наконец, переменная с входит только во второй член многочлена и не входит в первый член, значит, эту переменную нельзя вынести за скобки ни в какой степени. В итоге имеем:

12аb 4 - 18а 2 Ь 3 с = 6аЬ 3 2b - 6аЬ 3 Зас = 6аb 3 (2b - Зас).

д) 5а 4 -10а 3 +15а 8 = 5а 3 (а-2 + За 2).

Фактически в этом примере мы выработали следующий алгоритм.

Замечание . В ряде случаев полезно выносить за скобку в качестве общего множителя и дробный коэффициент.

Например:

Пример 2. Разложить на множители:

Х 4 у 3 -2х 3 у 2 + 5х 2 .

Решение. Воспользуемся сформулированным алгоритмом.

1) Наибольший общий делитель коэффициентов -1, -2 и 5 равен 1.
2) Переменная х входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки х 2 .
3) Переменная у входит не во все члены многочлена; значит, ее нельзя вынести за скобки.

В ы в о д: за скобки можно вынести х 2 . Правда, в данном случае целесообразнее вынести за скобки -x 2 .

Получим:
-х 4 у 3 -2х 3 у 2 + 5х 2 = - х 2 (х 2 у 3 + 2ху 2 - 5).

Пример 3 . Можно ли разделить многочлен 5а 4 - 10а 3 + 15а 5 на одночлен 5а 3 ? Если да, то выполнить деление .

Решение. В примере 1д) мы получили, что

5а 4 - 10а 3 + 15а 8 - 5а 3 (а - 2 + За 2).

Значит, заданный многочлен можно разделить на 5а 3 , при этом в частном получится а - 2 + За 2 .

Подобные примеры мы рассматривали в § 18; просмотрите их, пожалуйста, еще раз, но уже с точки зрения вынесения общего множителя за скобки.

Разложение многочлена на множители с помощью вынесения общего множителя за скобки тесно связано с двумя операциями, которые мы изучали в § 15 и 18, - с умножением многочлена на одночлен и с делением многочлена на одночлен .

А теперь несколько расширим наши представления о вынесении общего множителя за скобки. Дело в том, что иногда алгебраическое выражение задается в таком виде, что в качестве общего множителя может выступать не одночлен, а сумма нескольких одночленов.

Пример 4. Разложить на множители:

2x(x-2) + 5(x-2) 2 .

Решение. Введем новую переменную у = х - 2. Тогда получим:

2x (x - 2) + 5 (x - 2) 2 = 2ху + 5у 2 .

Замечаем, что переменную у можно вынести за скобки:

2ху + 5у 2 - у (2х + 5у). А теперь вернемся к старым обозначениям:

у(2х + 5у) = (х- 2)(2x + 5(х - 2)) = (x - 2)(2x + 5x-10) = (x-2)(7x:-10).

В подобных случаях после приобретения некоторого опыта можно не вводить новую переменную, а использовать следующую

2х(х - 2) + 5(х - 2) 2 = (х - 2)(2x + 5(x - 2))= (х - 2)(2х + 5х~ 10) = (х - 2)(7x - 10).

Календарно-тематичне планування з математики, відео з математики онлайн , Математика в школі скачати

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

На этом уроке мы познакомимся с правилами вынесения за скобки общего множителя, научимся находить его в различных примерах и выражениях. Поговорим о том, как простая операция, вынесение общего множителя за скобки, позволяет упростить вычисления. Полученные знания и навыки закрепим, рассмотрев примеры разных сложностей.

Что такое общий множитель, зачем его искать и с какой целью выносить за скобки? Ответим на эти вопросы, разобрав простейший пример.

Решим уравнение . Левая часть уравнения является многочленом, состоящим из подобных членов. Буквенная часть является общей для данных членов, значит, она и будет общим множителем. Вынесем за скобки:

В данном случае вынесение за скобки общего множителя помогло нам преобразовать многочлен в одночлен. Таким образом, мы смогли упростить многочлен и его преобразование помогло нам решить уравнение.

В рассмотренном примере общий множитель был очевиден, но будет ли так просто найти его в произвольном многочлене?

Найдём значение выражения: .

В данном примере вынесение общего множителя за скобки значительно упростило вычисление.

Решим еще один пример. Докажем делимость на выражения .

Полученное выражение делится на , что и требовалось доказать. И снова вынесение общего множителя позволило нам решить задачу.

Решим еще один пример. Докажем, что выражение делится на при любом натуральном : .

Выражение является произведением двух соседних чисел натурального ряда. Одно из двух чисел обязательно будет четным, значит, выражение будет делиться на .

Мы разобрали разные примеры, но применяли один и тот же метод решения: выносили общий множитель за скобки. Мы видим, что эта простая операция значительно упрощает вычисления. Было легко найти общий множитель для этих частных случаев, а что делать в общем случае, для произвольного многочлена?

Вспомним, что многочлен - сумма одночленов.

Рассмотрим многочлен . Данный многочлен является суммой двух одночленов. Одночлен - произведение числа, коэффициента, и буквенной части. Таким образом, в нашем многочлене каждый одночлен представлен произведением числа и степеней, произведение множителей. Множители могут быть одинаковыми для всех одночленов. Именно эти множители нужно определить и вынести за скобку. Сначала находим общий множитель для коэффициентов, причем целочисленных.

Было легко найти общий множитель, но давайте определим НОД коэффициентов: .

Рассмотрим ещё один пример: .

Найдем , что позволит нам определить общий множитель для данного выражения: .

Мы вывели правило для целых коэффициентов. Нужно найти их НОД и вынести за скобку. Закрепим это правило, решив ещё один пример.

Мы рассмотрели правило вынесения общего множителя для целочисленных коэффициентов, перейдем к буквенной части. Сначала ищем те буквы, которые входят во все одночлены, а потом определяем наибольшую степень буквы, которая входит во все одночлены: .

В этом примере была всего одна общая буквенная переменная, но их может быть несколько, как в следующем примере:

Усложним пример, увеличив количество одночленов:

После вынесения общего множителя мы преобразовали алгебраическую сумму в произведение.

Мы рассмотрели правила вынесения для целых коэффициентов и буквенных переменных отдельно, но чаще всего для решения примера нужно применять их вместе. Рассмотрим пример:

Иногда бывает сложно определить, какое выражение остается в скобках, рассмотрим легкий прием, который позволит вам быстро решить эту проблему.

Общим множителем также может быть искомое значение :

Общим множителем может быть не только число или одночлен, но и любое выражение, как, например, в следующем уравнении.

Чичаева Дарина 8в класс

В работе ученица 8 класса расписала правило разложения многочлена на множители путём вынесения общего множителя за скобки с подробным ходом решения множества примеровм по данной теме. На каждый разобранный пример предложено по 2 примера для самостоятельного решения, к которым есть ответы. Работа поможет изучить данную тему тем ученикам, которые по каким-то причинам её не усвоил при прохождении программного материала 7 класса и (или) при повторении курса алгебры в 8 классе после летних каникул.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа №32

«Ассоциированная школа ЮНЕСКО «Эврика-развитие»

г. Волжского Волгоградской области

Работу выполнила:

Ученица 8В класса

Чичаева Дарина

г. Волжский

2014

Вынесение общего множителя за скобки

  • - Одним из способов разложения многочлена на множители является вынесение общего множителя за скобки;
  • - При вынесении общего множителя за скобки применяется распределительное свойство ;
  • - Если все члены многочлена содержат общий множитель , то этот множитель можно вынести за скобки .

При решении уравнений, в вычислениях и ряде других задач бывает полезно заменить многочлен произведением нескольких многочленов (среди которых могут быть и одночлены). Представление многочлена в виде произведения двух или нескольких многочленов называют разложение многочлена на множители.

Рассмотрим многочлен 6a 2 b+15b 2 . Каждый его член можно заменить произведением двух множителей, один из которых равен 3b: →6a 2 b = 3b*2a 2 , + 15b 2 = 3b*5b →из этого мы получим: 6a 2 b+15b 2 =3b*2a 2 +3b*5b.

Полученное выражение на основе распределительного свойства умножения можно представить в виде произведения двух множителей. Один из них – общий множитель 3b , а другой – сумма 2а 2 и 5b→ 3b*2a 2 +3b*5b=3b(2a 2 +5b) →Таким образом, мы разложили многочлен: 6a 2 b+15b 2 на множители, представив его в виде произведения одночлена 3b и многочлена 2a 2 +5b. Данный способ разложения многочлена на множители называют вынесение общего множителя за скобки.

Примеры:

Разложите на множители:

А) kx-px.

Множитель х х выносим за скобки.

kx:x=k; px:x=p.

Получим: kx-px=x*(k-p).

б) 4a-4b.

Множитель 4 есть и в 1 слагаемом и во 2 слагаемом. Поэтому 4 выносим за скобки.

4а:4=а; 4b:4=b.

Получим: 4a-4b=4*(a-b).

в) -9m-27n.

9m и -27n делятся на -9 . Поэтому выносим за скобки числовой множитель -9.

9m: (-9)=m; -27n: (-9)=3n.

Имеем: -9m-27n=-9*(m+3n).

г) 5y 2 -15y.

5 и 15 делятся на 5; y 2 и у делятся на у.

Поэтому выносим за скобки общий множитель 5у .

5y 2 : 5у=у; -15y: 5у=-3.

Итак: 5y 2 -15y=5у*(у-3).

Замечание: Из двух степеней с одинаковым основанием выносим степень с меньшим показателем.

д) 16у 3 +12у 2 .

16 и 12 делятся на 4; y 3 и y 2 делятся на y 2 .

Значит, общий множитель 4y 2 .

16y 3 : 4y 2 =4y; 12y 2 : 4y 2 =3.

В результате мы получим: 16y 3 +12y 2 =4y 2 *(4у+3).

е) Разложите на множители многочлен 8b(7y+a)+n(7y+a).

В данном выражении мы видим, присутствует один и тот же множитель (7y+a) , который можно вынести за скобки. Итак, получим: 8b(7y+a)+n(7y+a)=(8b+n)*(7y+a).

ж) a(b-c)+d(c-b).

Выражения b-c и c-b являются противоположными. Поэтому, чтобы сделать их одинаковыми, перед d меняем знак «+» на «-»:

a(b-c)+d(c-b)=a(b-c)-d(b-c).

a(b-c)+d(c-b)=a(b-c)-d(b-c)=(b-c)*(a-d).

Примеры для самостоятельного решения:

  1. mx+my;
  2. ах+ау;
  3. 5x+5y ;
  4. 12x+48y;
  5. 7ax+7bx;
  6. 14x+21y;
  7. –ma-a ;
  8. 8mn-4m 2 ;
  9. -12y 4 -16y;
  10. 15y 3 -30y 2 ;
  11. 5c(y-2c)+y 2 (y-2c);
  12. 8m(a-3)+n(a-3);
  13. x(y-5)-y(5-y);
  14. 3a(2x-7)+5b(7-2x);

Ответы.

1) m(х+у); 2) а(х+у); 3) 5(х+у); 4) 12(х+4у); 5) 7х(a+b); 6) 7(2х+3у); 7) -а(m+1); 8) 4m(2n-m);

9) -4y(3y 3 +4); 10) 15у 2 (у-2); 11) (y-2c)(5с+у 2 ); 12) (a-3)(8m+n); 13) (y-5)(x+y); 14) (2x-7)(3a-5b).


Материал этой статьи объясняет, как найти наименьший общий знаменатель и как привести дроби к общему знаменателю . Сначала даны определения общего знаменателя дробей и наименьшего общего знаменателя, а также показано, как найти общий знаменатель дробей. Дальше приведено правило приведения дробей к общему знаменателю и рассмотрены примеры применения этого правила. В заключение разобраны примеры приведения трех и большего количества дробей к общему знаменателю.

Навигация по странице.

Что называют приведением дробей к общему знаменателю?

Теперь мы можем сказать, что такое приведение дробей к общему знаменателю. Приведение дробей к общему знаменателю – это умножение числителей и знаменателей данных дробей на такие дополнительные множители, что в результате получаются дроби с одинаковыми знаменателями.

Общий знаменатель, определение, примеры

Теперь пришло время дать определение общего знаменателя дробей.

Иными словами, общим знаменателем некоторого набора обыкновенных дробей является любое натуральное число, которое делится на все знаменатели данных дробей.

Из озвученного определения следует, что данный набор дробей имеет бесконечно много общих знаменателей, так как существует бесконечное множество общих кратных всех знаменателей исходного набора дробей.

Определение общего знаменателя дробей позволяет находить общие знаменатели данных дробей. Пусть, к примеру, даны дроби 1/4 и 5/6 , их знаменатели равны 4 и 6 соответственно. Положительными общими кратными чисел 4 и 6 являются числа 12 , 24 , 36 , 48 , … Любое из этих чисел является общим знаменателем дробей 1/4 и 5/6 .

Для закрепления материала рассмотрим решение следующего примера.

Пример.

Можно ли дроби 2/3 , 23/6 и 7/12 привести к общему знаменателю 150 ?

Решение.

Для ответа на поставленный вопрос нам нужно выяснить, является ли число 150 общим кратным знаменателей 3 , 6 и 12 . Для этого проверим, делится ли 150 нацело на каждое из этих чисел (при необходимости смотрите правила и примеры деления натуральных чисел , а также правила и примеры деления натуральных чисел с остатком): 150:3=50 , 150:6=25 , 150:12=12 (ост. 6) .

Итак, 150 не делится нацело на 12 , следовательно, 150 не является общим кратным чисел 3 , 6 и 12 . Следовательно, число 150 не может быть общим знаменателем исходных дробей.

Ответ:

Нельзя.

Наименьший общий знаменатель, как его найти?

В множестве чисел, являющихся общими знаменателями данных дробей, существует наименьшее натуральное число , которое называют наименьшим общим знаменателем. Сформулируем определение наименьшего общего знаменателя данных дробей.

Определение.

Наименьший общий знаменатель – это наименьшее число, из всех общих знаменателей данных дробей.

Осталось разобраться с вопросом, как найти наименьший общий делитель.

Так как является наименьшим положительным общим делителем данного набора чисел, то НОК знаменателей данных дробей представляет собой наименьший общий знаменатель данных дробей.

Таким образом, нахождение наименьшего общего знаменателя дробей сводится к знаменателей этих дробей. Разберем решение примера.

Пример.

Найдите наименьший общий знаменатель дробей 3/10 и 277/28 .

Решение.

Знаменатели данных дробей равны 10 и 28 . Искомый наименьший общий знаменатель находится как НОК чисел 10 и 28 . В нашем случае легко : так как 10=2·5 , а 28=2·2·7 , то НОК(15, 28)=2·2·5·7=140 .

Ответ:

140 .

Как привести дроби к общему знаменателю? Правило, примеры, решения

Обычно обыкновенные дроби приводят к наименьшему общему знаменателю. Сейчас мы запишем правило, которое объясняет, как привести дроби к наименьшему общему знаменателю.

Правило приведения дробей к наименьшему общему знаменателю состоит из трех шагов:

  • Во-первых, находится наименьший общий знаменатель дробей.
  • Во-вторых, для каждой дроби вычисляется дополнительный множитель, для чего наименьший общий знаменатель делится на знаменатель каждой дроби.
  • В-третьих, числитель и знаменатель каждой дроби умножается на ее дополнительный множитель.

Применим озвученное правило к решению следующего примера.

Пример.

Приведите дроби 5/14 и 7/18 к наименьшему общему знаменателю.

Решение.

Выполним все шаги алгоритма приведения дробей к наименьшему общему знаменателю.

Сначала находим наименьший общий знаменатель, который равен наименьшему общему кратному чисел 14 и 18 . Так как 14=2·7 и 18=2·3·3 , то НОК(14, 18)=2·3·3·7=126 .

Теперь вычисляем дополнительные множители, с помощью которых дроби 5/14 и 7/18 будут приведены к знаменателю 126 . Для дроби 5/14 дополнительный множитель равен 126:14=9 , а для дроби 7/18 дополнительный множитель равен 126:18=7 .

Осталось умножить числители и знаменатели дробей 5/14 и 7/18 на дополнительные множители 9 и 7 соответственно. Имеем и .

Итак, приведение дробей 5/14 и 7/18 к наименьшему общему знаменателю завершено. В итоге получились дроби 45/126 и 49/126 .


Close